• Title/Summary/Keyword: Wilkinson Divider

Search Result 98, Processing Time 0.023 seconds

A Broadband Half-Mode Substrate Integrated Waveguide Quadrature Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line

  • Eom, Dong-Sik;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • In this work, a broadband composite right/left-handed (CRLH) half-mode substrate integrated waveguide (HMSIW) quadrature Wilkinson power divider is proposed. The proposed CRLH-HMSIW quadrature power divider includes a microstrip Wilkinson power divider on the transition structure between the microstrip and HMSIW, and two thru transmission lines for the HMSIW and the CRLH-HMSIW. The measured amplitude, phase difference and isolation between the two output ports of the proposed structure have 1 dB, ${\pm}5^{\circ}$ and less than -15 dB in a wide frequency range of 4.1-6.68 GHz with 47.9% bandwidth, respectively.

Design of 4-Way Wilkinson Divider with Waveguide to Stripline Transition Used in The Monopulse Radar Front-end (도파관 천이 구조를 갖는 모노펄스 레이더용 4-Way 윌킨슨 분배기 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.69-76
    • /
    • 2010
  • From the present paper we researched about the design of 4-Way Wilkinson divider with waveguide to stripline transition which used to split the LO signal with equi-amplitude and equi-phase in the X-Band Monopulse radar RF front-end. The monopulse radar front end operating in the X-Band is composed of 3 waveguide reception mixers which down convert sum, azimuth and elevation signal to IF and one SSB waveguide mixers which generate X-Band test signal. It is required the 4-way divider with low loss, equi amplitude and equiphase splitting the LO signal to provide the LO signal to each mixer consisting RF frontend. In this paper we designed and fabricated the 4-Way Wilkinson divider with waveguide transition to divide the LO signal into equi-amplitude and equi-phase. The fabricated Wilkinson divider have the insertion loss 6.8dB, VSWR 1.06~1.28, and phase balance maximum 4.5degree for each output ports.

High Performance Wilkinson Power Divider Using Integrated Passive Technology on SI-GaAs Substrate

  • Wang, Cong;Qian, Cheng;Li, De-Zhong;Huang, Wen-Cheng;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.129-133
    • /
    • 2008
  • An integrated passive device(IPD) technology by semi-insulating(SI)-GaAs-based fabrication has been developed to meet the ever increasing needs of size and cost reduction in wireless applications. This technology includes reliable NiCr thin film resistor, thick plated Cu/Au metal process to reduce resistive loss, high breakdown voltage metal-insulator-metal(MIM) capacitor due to a thinner dielectric thickness, lowest parasitic effect by multi air-bridged metal layers, air-bridges for inductor underpass and capacitor pick-up, and low chip cost by only 6 process layers. This paper presents the Wilkinson power divider with excellent performance for digital cellular system(DCS). The insertion loss of this power divider is - 0.43 dB and the port isolation greater than - 22 dB over the entire band. Return loss in input and output ports are - 23.4 dB and - 25.4 dB, respectively. The Wilkinson power divider based on SI-GaAs substrates is designed within die size of $1.42\;mm^2$.

Design of Wilkinson Power Divider for nth Harmonic Suppression (고조파 제거 기능을 갖는 윌킨슨 전력분배기의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.42-46
    • /
    • 2014
  • A modified network to suppress the nth harmonics in a Wilkinson power divider is presented. The solution has been found by adding transmission lines, whose electrical lengths are determined by using the suppression terms, between two transformers of the traditional design. Experimental results show the second and third harmonics levels achieved are -45.3 and -46.4 dB, respectively, while the performance of the power divider at the fundamental frequency is maintained.

Wide-Bandwidth Wilkinson Power Divider for Three-Way Output Ports Integrated with Defected Ground Structure

  • Sreyrong Chhit;Jae Bok Lee;Dal Ahn;Youna Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2024
  • This study presents the design of a Wilkinson power divider for three-way output ports (WPD3OP), which incorporates a defected ground structure (DGS). An asymmetric power divider is integrated into the output ports of the conventional Wilkinson power divider (WPD), establishing a three-way output port configuration. The DGS introduces periodic or irregular patterns into the ground plane to suppress unwanted electromagnetic wave propagation, and its incorporation can enhance the performance of the power divider, in terms of the power-division ratio, isolation, and bandwidth, by reducing spurious resonances. The proposed design algorithm for an asymmetric power divider for three-way output ports is analyzed via circuit simulations using High-Frequency Simulation Software (HFSS). The results verify the validity of the proposed method. The analysis of the WPD3OP integrated with DGS certifies the achievement of a center frequency of 2 GHz. This confirmation is supported by schematic ideal design simulation results and measurements encompassing insertion losses, return losses, and isolation.

A Study of Highly Miniaturized On-Chip Wilkinson Power Divider Employing Periodic Strip Structure for Application to Silicon RFIC (실리콘 RFIC상에 주기적 스트립 구조를 이용한 초소형 온칩용 윌킨슨 전력분배기 개발에 관한 연구)

  • Ju, Jeong-Gab;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.540-546
    • /
    • 2010
  • In this study, using a coplanar waveguide employing Periodic Strip Structure (PSS), highly miniaturized on-chip wilkinson power divider was realized on Si radio frequency integrated circuit (RFIC). The wilkinson power divider exhibited good RF performances from 25 to 50 GHz, and its size was $0.44{\times}0.1mm^2$, which is 4.8 % of conventional one. We also investigated the RF performances of various structures employing PSS.

Design Method of the Meander-Coupled Wilkinson Power Divider for L-band (미앤더(Meander) 결합 형태의 Wilkinson 전력 분배기 설계 방법)

  • 이영순;이창언;김선효;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.676-685
    • /
    • 2001
  • In this paper, the design method of the meander-coupled Wilkinson power divider with slit is proposed. Because the electrical performance of this structure is varied with each coupling distance and the slit's size, a tedious design work, which is done by trial and error correction, is required to determine the values of parameters for the best suitable operation. To solve this problems, therefore, an experimental design formulas for optimum performance are presented by curve fitting, under the desired center frequency($f_0$). As the example using the proposed design equation, we designed and fabricated the meander-coupled divider at $f_0$=1.5 GHz. It has better electrical performance and measured results also agrees very well that of the simulated. From these observation, it can be concluded that the obtained design formulas are useful for design of this divider.

  • PDF

A Study on Compensating Method of 2-way Power Splitter for CATV and/or MATV Systems (CATV 및 MATV 시스템용 2분배기의 보상방법에 관한 연구)

  • 민경식;김동일;정세모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.499-508
    • /
    • 1993
  • This paper has dealt with the design methods and the analysis of frequency characteristics for the power splitters with ferrite toroids, which are extensively used in CATV and/or MATV systems. The theoretical design methods and frequency characteristics of the prototype Wilkinson's 2-way power divider have been reviewed in lumped-element circuits form. On the basis of the design theory of the prototype Wilkinson's power divider, the method compensating of the prototype Wilkinson's power divider has been proposed by means of adding matching transformers. Thus, it has been shown that the theoretical frequency characteristics of the compensated power splitter are improved drastically in comparison with the prototype Wilkinson's power divider. Furthermore, the practical measurements of the frequency characteristics for the fabricated circuits show agreements with the theoretical results, and hence, the validity of the proposed design and analysis methods has been confirmed.

  • PDF

Compact Wilkinon Power Divider Design and Simulation Using IPD Technology

  • Cong, Wang;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.186-188
    • /
    • 2008
  • The wireless communication revolution has spawned a revival of interest in the design and optimization of radio transceivers. Radio transmit modules continue to shrink in die size and cost, requiring novel approaches for integration of the numerous passive elements of the radio front-end. A 3 dB Wilkinson power divider based on GaAs substrates, for DCS 1710-1880 MHz band was designed and fabricated showing excellent performance.

  • PDF

Bandwidth Broadening for the GPS Microstrip Patch Antenna (GPS용 마이크로스트립 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.73-79
    • /
    • 2015
  • Enhanced bandwidths of the GPS microstrip patch antennas applied by a Wilkinson power divider and a quadrature hybrid were compared. The square patch was designed, and fed by the two port probes for the circuit application. The Wilkinson power divider and quadrature hybrid circuit were designed, and applied to the patch antenna. The designed patch and two circuits were implemented on the FR4 board, and combined together. The measurement of the bandwidth within a voltage standing wave ratio (VSWR) of 2: 1 were 36.5% (1,200~1,775 MHz) in the case of the Wilkinson power divider and 29.84% (1,230~1,700 MHz) in the case of the quadrature hybrid. Axial ratios (AR) in 3dB were 17.14% bandwidth (1,360~1,630 MHz) and 15.87% bandwidth (1,400~1,650 MHz), respectively. The application of the Wilkinson power divider is wider than that of the quadrature hybrid. The peak gains in the anechoic chamber at the GPS center frequency were measured as 2.84 dBi and 2.75 dBi, respectively.