• 제목/요약/키워드: Width-to-Thickness ratio

검색결과 461건 처리시간 0.023초

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동 (Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes)

  • 유영찬
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.617-624
    • /
    • 2021
  • 각형강관 기둥에 콘크리트를 충전하여 사용하는 콘크리트충전 강관구조가 구조부재로 사용되면 기둥 부재의 내력과 변형 능력이 증가되어 높은 효율성을 가진 구조물 구현이 가능해 진다. 콘크리트충전 강관구조에 대한 국내의 설계 기준은 대한건축학회에서 2005년에 제정한 후, 2009년과 2016년에 각각 개정되었다. 연구 목적은 콘크리트충전 각형강관 단주를 대상으로 일축 압축실험을 실시하여 압축내력 및 변형능력에 주는 영향을 파악하고, 국내의 건축구조기준의 기준식을 검증하여 차후 수정 및 보완에 필요한 자료를 제공하는데 있다. 실험에서 강관은 냉간가공으로 제작된 각형강관을 사용하였고, 시험체는 강관의 폭두께비를 변수로 총 26개를 제작하여 중심 압축실험을 실시하였다. 실험결과 콘크리트충전 각형강관 단주의 압축내력과 변위관계 및 파괴모드를 얻었고, 실험결과를 분석하여 콘크리트의 충전효과와 폭두께비의 영향을 파악하였다. 충전된 콘크리트의 압축내력은 일축응력 상태보다 9%정도 증가하였는데, 이것은 차후 건축구조기준에 반영할 필요가 있다. 실험결과를 건축구조기준과 비교한 결과, 냉간가공된 각형강관의 경우 건축구조기준의 콤팩트단면 한계폭두께비 2.26은 다소 과대 평가하고 있기 때문에 수정이 필요하며, 보수적으로 보완한 계수 1.35로 제한하여 보다 더 안정적인 설계식을 제안하였다.

고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구 (The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members)

  • 김진경;김희동;이명재
    • 한국강구조학회 논문집
    • /
    • 제13권2호
    • /
    • pp.123-131
    • /
    • 2001
  • 본 연구의 목적은 고강도 H형강 기둥재(beam-column)의 폭두께비에 관한 기준을 조사하고 좌굴내력을 평가하여, 강구조 한계상태설계기준과 허용응력설계기준(안)과 비교함으로써, 고강도강을 사용한 기둥부재 설계시 적용된 기준식의 타당성을 검토하기 위한 것이다. 실험에 사용된 고강도강은 SM520TMC, SM570Q 등을 사용하였고, 강재의 기계적 성질과 단주의 응력-변형도 관계를 파악하기 위하여 인장시험 및 단주압축시험을 실시하였다. 또한 고강도강 기둥재의 좌굴내력을 산정하기 위하여 수치해석을 수행하였다. 수치해석에 사용된 축력-모멘트-곡률 관계는 단주압축실험에서 구해진 응력-변형도 관계를 사용하였다

  • PDF

양자모델을 적용한 실리콘 나노선 트랜지스터의 채널 크기에 따른 전도 및 전하분포 특성 시뮬레이션 (Simulation of channel dimension dependent conduction and charge distribution characteristics of silicon nanowire transistors using a quantum model)

  • 황민영;최창용;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.77-78
    • /
    • 2009
  • We report numerical simulations to investigate of the dependence of the on/off current ratio and channel charge distributions in silicon nanowire (SiNW) field-effect transistors (FETs) on the channel width and thicknesses. In order to investigate the transport behavior in devices with different channel geometries, we have performed detailed two-dimensional simulations of SiNWFETs and control FETs with a fixed channel length L of 10um, but varying the channel width W from 5nm to 5um, and thickness t from 10nm to 30nm. We have shown that $Q_{ON}/Q_{OFF}$ drastically decreases (from ${\sim}2.9{\times}10^4$ to ${\sim}9.8{\times}10^3$) as the channel thickness increases (from 10nm to 30nm). As a result of the simulation using a quantum model, even higher charge density in the bottom of SiNW channel was observed than that in the bottom of control channel.

  • PDF

Accuracy of periodontal probe visibility in the assessment of gingival thickness

  • Kim, Young-Sung;Park, Ji-Sun;Jang, Young-Hun;Son, Jung-Hun;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • 제51권1호
    • /
    • pp.30-39
    • /
    • 2021
  • Purpose: The present study was undertaken to examine whether periodontal probe visibility (PV) accurately reflects gingival thickness (GT) and to identify factors affecting PV using cluster and multivariate analyses. Methods: The clinical characteristics of the maxillary central incisors (n=90 subjects) were examined. Clinical photographs, sex, PV, probing depth, gingival width, papilla height, GT as measured with an ultrasonic device, and the ratio of crown width to crown length were recorded. Multivariate analysis, using multinomial baseline-category logistic regression, was used to identify factors predictive of PV. Cluster analysis was used to identify gingival biotypes. Results: In the multivariate analysis, sex was the only significant predictor of PV (odds ratio, 6.48). Two clusters of subjects were created based on morphometric parameters. The mean GT among cluster A subjects was significantly lower than that among cluster B subjects (P=0.015). No significant difference was found between cluster A and B subjects in terms of PV score (P=0.583). Conclusions: Periodontal PV was not associated with GT as measured directly using an ultrasonic device. Sex was a highly significant predictor of periodontal PV. GT was found to be correlated with morphological characteristics of the periodontium.

유한요소법을 이용한 샌드위치형 감쇠 보구조물의 진동해석 (Vibration Analysis of Damped Sandwich Beam Using Finite Element Method)

  • 서영수;정의봉;신준엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.978-981
    • /
    • 2005
  • The vibration analysis of damped sandwich beam is conducted using finite element method. The equation of motion presented by Mead and Markus is used to formulate FEM. Also as the thickness of the core in the damped sandwich beam goes to zero, conventional beam theory based on the transformed-section method and the equation of Mead and Markus are compared. According to the change of thickness and loss factor of the core, the forced frequency response of beam is calculated and discussed. And then using the half-power band width method, the damping ratio of each mode is calculated and discussed about each case.

  • PDF

콘크리트충전 각형강관기둥-보 핀접합부의 거동에 관한 실험적 연구 (Structural Behaviour of Beam-to-Concrete Filled Steel Tube Column Pin Connections)

  • 김철환;이은택;김성은
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.437-443
    • /
    • 2000
  • 콘크리트 충전각형강관 기둥-보 핀접합부를 대상으로 접합부의 회전강성, 전단내력 등 역학적 특성을 규명하기 위하여 실험을 수행하였다. 실험변수는 강관기둥의 폭-두께비 및 강관 내부의 수평 다이어프램, 슬래브 설치 유무이다. 기둥의 폭-두께비가 큰 시험체가 폭-두께비가 작은 시험체에 비하여 접합부의 회전강성이 낮으며, 변형도 접합부에 집중되어 발생한다.

  • PDF

조압연 공정의 판 폭 퍼짐 예측 모델 - Part II : 평판에의 적용 (A New Model for Predicting Width Spread in a Roughing Mill - Part II: Application to Flat Rolling)

  • 이동훈;이경보;황상무
    • 소성∙가공
    • /
    • 제23권3호
    • /
    • pp.145-150
    • /
    • 2014
  • Precision control of the slab is crucial for product quality and production economy in hot strip mills. The current study presents a new model for predicting width spread of a slab with a rectangular cross section during roughing. The model is developed on the basis of the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. This model incorporates the effect of process variables such as the shape factor and the ratio of width to thickness. We compare the results of this model to 3-D finite element (FE) process simulations and also to results from a previous study.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

Shear response of lean duplex stainless steel plate girders

  • Armoosh, Salam R.;Khalim, A.R.;Mahmood, Akram Sh.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1267-1281
    • /
    • 2015
  • Carbon steel plate girders have been used on a large scale in the building industry. Nowadays, Lean Duplex Stainless Steel (LDSS) plate girders are gaining popularity as they possess greater strength and are more impervious to corrosion than those that are constructed from carbon steel. Regardless of their popularity, there is very limited information with regards to their shear behavior. In this paper, the non-linear finite element analysis was employed to investigate the shear behavior of LDSS plate girders. Parameters considered were the web thickness, the flange width, and the girders aspect ratio. The analysis revealed that although the shear behavior of the LDSS girders was no different from that of carbon steel plate girders, it had obviously been affected by the non-linearity of the material. Furthermore, the selected parameters were found to pronounce effect on the shear capacity of the LDSS girders. That is, the shear capacity increased considerably with web thickness, and increased slightly with flange width. However, it was reduced as the aspect ratio increased. Comparisons between the finite element analysis failure loads and those predicted by the current European Code of Practice revealed that the latter underestimated the shear strength of the LDSS plate girders.