• Title/Summary/Keyword: Width-to-Height ratio

검색결과 485건 처리시간 0.032초

인공 도로협곡 관측 자료를 활용한 전산유체역학모델 검증 (Verification of Computational Fluid Dynamics Model Using Observation Data in Artificial Street Canyon)

  • 김도형;홍선옥;이대근;이영곤;김백조
    • 대기
    • /
    • 제26권3호
    • /
    • pp.423-433
    • /
    • 2016
  • In this study, performance of a computational fluid dynamics (CFD) model is assessed from analysis on air flow pattern which is observed in the artificial street canyon. Field observations focusing on flows were conducted at an artificial street canyon in Magok region. For the observation of three-dimensional airflow structures, twelve three-dimensional wind anemometers (hereafter, CSAT3) were installed inside the street canyon. The street canyon was composed of two rectangular buildings with 35-m length, 4-m width, and 7-m height. The street width (distance between the buildings) is 7 m, making the street aspect ratio (defined by the ratio of building height to street width) of 1. For the observation of above-building wind, a CSAT3 was installed above the northwest-side building. Southwesterly, westerly and northwesterly were dominant in the street canyon during the observations. Because wind direction is parallel to the street canyon in the southwesterly case, westerly and northwesterly were selected as inflow directions in numerical simulations using a computational fluid dynamics model developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The observations showed that a well-structured vortex flow (skimming flow) and an evidence of a small eddy at the corner of the downwind building and ground appeared. The CFD_NIMR_SNU reproduced both the observed flow patterns reasonably well, although wind speeds inside the street canyon were underestimated.

Impact of Fin Aspect Ratio on Short-Channel Control and Drivability of Multiple-Gate SOI MOSFET's

  • Omura, Yasuhisa;Konishi, Hideki;Yoshimoto, Kazuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권4호
    • /
    • pp.302-310
    • /
    • 2008
  • This paper puts forward an advanced consideration on the design of scaled multiple-gate FET (MuGFET); the aspect ratio ($R_{h/w}$) of the fin height (h) to fin width (w) of MuGFET is considered with the aid of 3-D device simulations. Since any change in the aspect ratio must consider the trade-off between drivability and short-channel effects, it is shown that optimization of the aspect ratio is essential in designing MuGFET's. It is clearly seen that the triple-gate (TG) FET is superior to the conventional FinFET from the viewpoints of drivability and short-channel effects as was to be expected. It can be concluded that the guideline of w < L/3, where L is the channel length, is essential to suppress the short-channel effects of TG-FET.

앵커의 극한 지지력 변화와 파괴 거동에 관한 연구 (A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands)

  • 장병욱;황명수
    • 한국농공학회지
    • /
    • 제32권4호
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

날개형 및 격막형 배플을 이용한 유체저장탱크 내부의 슬로싱 저감 연구 (A Study on the Reduction of the Sloshing of Storage Tank Using Wing and Diaphragm Baffle)

  • 이영신;김현수;이재형;김영완;고성호
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2039-2046
    • /
    • 2003
  • Storage tank filled with fluid has unique dynamic characteristics compared to general structures, due to the interaction between fluid and structure. The oscillation of the fluid surface caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircrafts, and liquid missles. In this study, the evaluation method for the reduction of sloshing, the optimized size and location of wing and diaphragm baffles are suggested based on the experimental results. The experimental device can simulate the translation motion. A rectangular tank and various baffles are fabricated to study on the sloshing characteristics. The forces measured using the load cell at tank wall and those are compared with each other through the Fourier transformation for various conditions. The study of the sloshing of the rectangular tank equipped with baffles is conducted under the same conditions with non-baffled rectangular tank experiment. From the experimental results, the sloshing reduction effect by the baffles is observed. In conclusion in case of diaphragm baffles, the optimized size ratio of the width of baffle to the water height is 0.44 and the installation location has no effect to the damping of sloshing. In case of wing baffles, the optimized size ratio of the width of baffle to the length of a rectangular tank is 0.1 and the optimized location ratio of the baffle to the water height is 0.9.

골격성 III급 부정교합자의 정모 두부규격방사선 계측학적 특징 (Posteroanterior cephalometric characteristics in skeletal Class III malocclusion)

  • 정송우;홍성규;김정기
    • 대한치과교정학회지
    • /
    • 제29권3호
    • /
    • pp.317-325
    • /
    • 1999
  • 골격성 III급 부정교합 환자의 정확한 진단과 분석에 있어서 삼차원적인 골격부조화의 양상이나 안면부조화의 원인을 파악하는 것은 중요하다. 본 연구에서는 정모 두부규격방사선 사진 상에서 나타나는 골격성 III급 부정교합자의 계측학적 특성을 파악하기 위하여, 양호한 안모와 교합을 가지는 성인 남녀 정상교합자 60명과 전후방적 부조화가 심한 III급 부정교합을 가지는 성인 남녀 60명을 대상으로 측모와 정모 두부규격방사선 사진의 투사도를 작성하여 안면폭경, 고경, 각각의 비율, 측모계측치에 대응되는 정모계측치의 비율을 구하였고, 각각의 계측치와 비율을 비교, 분석하여 다음과 같은 결론을 얻었다. 1. 골격성 III급 부정교합자에서 골격의 전후방적 부조화는 정상군보다 상악골길이(Cd-A)가 짧은 것보다는 하악골길이(Cd-Gn)가 긴 것에 기인하였다. 2. 골격성 III급 부정교합자는 정상교합자보다 긴 안모를 가지는데, 이는 상안면고경(Cg-ANS)보다는 하안면 고경(ANS-Me), 특히 하악골 고경(Cd-Me)의 증가로 인한 것이었다. 3. 골격성 III급 부정교합자의 폭경은 단지 여자의 상$\cdot$하악 대구치간 폭경(U6-U6, L6-L6)과, 하악폭경(Ag-Ag)만 정상교합자보다 컸을 뿐, 이외 어떤 폭경항목도 정상과 차이가 없었다. 4.골격성 III급 부정교합자의 하악골 길이의 증가는 안모의 고경 특히 하안면 고경의 증가로 나타나지만, 하악골 폭경에서는 영향이 나타나지 않았다.

  • PDF

다양한 노즐 수 변화에 따른 충돌 제트의 열전달 특성에 관한 수치적 연구 (A Numerical Study on the Heat Transfer Characteristics of the Multiple Slot Impinging Jet)

  • 김상근;하만영;손창민
    • 설비공학논문집
    • /
    • 제23권11호
    • /
    • pp.754-761
    • /
    • 2011
  • The present study numerically investigates two-dimensional flow and heat transfer in the multiple confined impinging slot jet. Numerical simulations are performed for the different Reynolds numbers(Re=100 and 200) in the range of nozzles from 1 to 9 and height ratios(H/D) from 2 to 5, where H/D is the ratio of the channel height to the slot width. The vector plots of velocity profile, stagnation and averaged Nusselt number distributions are presented in this paper. The dependency of thermal fields on the Reynolds number, nozzle number and height ratio can be clarified by observing the Nusselt number as heat transfer characteristic at the stagnation point and impingement surface. The Nusselt number at the stagnation point of the central slot shows unsteadiness at H/D=3 and Re=200. The value of Nusselt number at the stagnation point of the central slot decreases with higher Reynolds number and number of nozzle although overall area averaged Nusselt number increases. Hence careful selection of geometrical parameters and number of nozzle are necessary for optimization of the heat transfer performance of multiple slot impinging jet.

근접주사현미경의 관점에서 플랜지된 평행평판 도파관과 근접도체스트립과의 결합에 관한 연구 (A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Nearby Conducting Strip from the Viewpoint of Near-Field Scanning Microscopy)

  • 이종익;고지환;조영기
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2260-2266
    • /
    • 2009
  • 본 논문에서는 플랜지된 평행평판도파관으로 급전된 슬릿과 이에 평행하고 근접하는 도체 스트립과의 전자기적인 결합문제를 단순화된 근접주사현미 경의 관점에서 연구하였다. 슬릿의 등가어드미턴스, 슬릿근처 도파관 내부 및 외부의 무효전력, TEM파 전압반사계수의 크기 및 위상 등의 변화결과로부터 플랜지된 평행평판도파관의 특성을 조사하였다. 제안된 구조의 근접주사현미경으로서의 성능을 다양한 구조적인 파라미터들(도파관 높이, 슬릿의 폭, 스트립의 폭, 슬릿과 스트립 간격, 슬릿 폭과 도파관 높이의 비)이 TEM파 전압반사계수의 크기와 위상에 미치는 영향을 관찰하여 점검하였다. 슬릿으로부터 스트립의 변위에 따른 전압반사계수의 변화결과로부터 도파관의 높이가 작을 때 보다 높은 주사해상도를 얻을 수 있음과 반사계수의 크기 변화에 비해 위상변화가 훨씬 민감함을 확인하였다.

수력학적 지름 변화에 따른 직사각형 마이크로채널 단면에서의 파텐셜 변화 (Potential Change in the Cross Section of the Rectangular Microchannel with Different Hydraulic Diameters)

  • 이효송;김기호;유재근;노순영;최재호;윤수경;이영우
    • 청정기술
    • /
    • 제12권4호
    • /
    • pp.211-216
    • /
    • 2006
  • 단면이 직사각형 형태를 갖는 마이크로채널에서 이론적인 퍼텐셜의 분포변화를 제타퍼텐셜과 수력학적 지름을 변수로 조사하였다. 그리고 종/횡(Height-Width) 비를 1, 1/2, 1/3로 변화시켜서 형태의 변화에 따른 퍼텐셜의 분포변화를 조사하였다. 이를 위하여 Comsol 사의 FEMLAB 3.0을 이용하여 전산 무사를 실시하였다. 그 결과 단면의 수력학적 지름이 감소함에 따라서 높이방향 표면이 퍼텐셜 분포에 미치는 영향이 일정한 영역까지 나타났다. 또한 단면의 중앙을 지나는 가상의 선상에서 퍼텐셜 값은 제타퍼텐셜에 정비례하여 증가하였으며, 퍼텐셜 값은 단면의 종/횡 비가 증가함에 따라서 그 기울기가 증가하였다. 그렇지만 전체적으로 보았을 때, 단면의 종/횡 비가 감소함에 따라서 전기이중층이 표면방향으로 압축되는 형태를 나타내었으며, 이는 제타퍼텐셜의 증가를 가져올 것으로 사료된다.

  • PDF

덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향 (Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.