• 제목/요약/키워드: Widmanst$\ddot{a}$tten

검색결과 7건 처리시간 0.167초

${\beta}$-열처리시 Nb 첨가량과 냉각속도가 Zr 합금의 상변태에 미치는 영향 (Effect of Nb-content and Cooling Rate during ${\beta}$-quenching on Phase Transformation of Zr Alloys)

  • 최병권;김현길;정용환
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.271-277
    • /
    • 2004
  • Zr-xNb alloys (x = 0.2, 0.8, 1.5 wt.%) were prepared to study the characteristics of the phase transformation in Zr-Nb system. The samples were heat treated at ${\beta}$-temperature ($1020^{\circ}C$) for 20 min and then cooled with different cooling rate. The microstructures of the specimens having the same compositions were changed with cooling rate and Nb content. The Widmanst$\ddot{a}$tten structure was observed on the furnace-cooled sample. The relationship between ${\alpha}$-Widmanst$\ddot{a}$tten and ${\beta}$-phase was the {0001}${\alpha}$//{110}${\beta}$, <11$\bar{2}$0>//<111>. The ${\beta}$-phase in Widmanst$\ddot{a}$tten structure of Zr-Nb alloys containing Nb more than solubility limit was identified as ${\beta}_{Zr}$ phase which was a stable phase at high temperature. In the water quenched samples, two kinds of martensite structures were observed depending on the Nb-concentration. The lath martensite was formed in Zr-0.2, 0.8 wt.% Nb alloys and the plate martensite having twins was formed in Zr-1.5 wt.% Nb alloy.

Ti-6Al-4V 합금의 고온 성형시 미세조직 예측에 관한 연구 (Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy)

  • 이유환;신태진;박노광;심인옥;황상무;이종수
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.70-78
    • /
    • 2004
  • A study has been made to investigate the high temperature deformation behavior of Ti-6Al-4V alloyand to predict the final microstructure under given forming conditions. Equiaxed and $Widmanst\ddot{a}tten$ microstructures of Ti-6Al-4V alloys were prepared as initial microstructures. By performing the compression tests at high temperatures$(700\~1100^{\circ}C)$ and at a wide range of strain rates$(10^{-4}\~10^2/s)$, various parameters such as strain rate sensitivity(m) and activation energy(Q) were calculated and used to establish constitutive equations. When the specimens were deformed up to strain 0.6, equiaxed microstructure did not show any significant changes in microstructure, while $Widmanst\ddot{a}tten$ microstructure revealed considerable flow softening, which was attributed to the globularization of a platelet at the temperature range of $800\~970^{\circ}C$ and at the strain rate range of $10^{-4}\~10^{-2}/s$. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural evolution during the deformation. The grain size and the volume fraction of second phase of deformed body were predicted and compared with the experimental results.

강화공정에 따른 비균질 티타늄 금속기 복합재료 모델링 (Modeling the Heterogeneous Microstructures of Ti-MMCs in Consolidation Process)

  • 이수윤;김태원
    • Composites Research
    • /
    • 제18권3호
    • /
    • pp.21-30
    • /
    • 2005
  • 고온진공간압 성형기술 및 포일-섬유-포일 방식을 이용하여 티타늄금속기 복합재료를 개발하였다. 이와 관련하여 강화공정 전후의 비균질 미시조직의 변화를 관측하였으며 공정 진행에 따른 충진거동도 함께 비교분석하였다. 결과에서 알 수 있듯이 강화공정 동안 섬유의 분포 형태에 따라 등축 $\alpha$, transformed $\beta$$ Widmanst\ddot{a}tten$ $\alpha$ 등 상당한 미시조직의 변화가 확인되었다. 공정 진행에 따른 미시조직의 변화는 따라서 변형에 대한 기지재료의 불균일 정도와 관련한 결정립성장 및 재결정과 같은 변형기구들로 설명할 수 있었다. 이와 같은 변형기구 해석을 바탕으로 공정에 따른 기공의 충진 정도와 조직의 변화를 예측하기 위한 미시역학적 구성방정식이 개발되었으며, 또한 유한요소 해석을 통해 실공정 과정을 보다 정밀하게 예측할 수 있었다.

Ti-6Al-4V합금의 미세조직에 따른 초고속 변형특성 (Effect of Microstructures on the Deformation Behavior of Ti-6Al-4V Alloy at Ultra High Strain rate)

  • 이유환;이동근;이성학;최준홍;허선무;이종수
    • 한국군사과학기술학회지
    • /
    • 제5권3호
    • /
    • pp.89-97
    • /
    • 2002
  • In this study, the effect of $\alpha$-phase morphology on the dynamic deformation behavior at ultra high strain rate was investigated by EBW(Explosive Bridge Wire) test. All of tests and analyses were conducted on three typical microstructures of Ti-6Al-4V alloy, i.e. equiaxed, widmanstatten and bimodal microstructures. The spall strength and HEL(Hugoniot Elastic Limit) of the specimens that have the thickness of 2mm and 4mm were highest with the bimodal microstructure. These results were similar with previous study which was performed by dynamic torsion test(Kolsky torsion test).

PREDICTION OF MICROSTRUCTURE DURING HIGH TEMPERATURE FORMING OF Ti-6Al-4V ALLOY

  • Lee Y. H.;Shin T. J.;Yeom J. T.;Park N. K.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.43-46
    • /
    • 2003
  • Prediction of final microstructures after high temperature forming of Ti-6Al-4V alloy was attempted in this study. Using two typical microstructures, i.e., equiaxed and $Widmanst\ddot{a}tten$ microstructures, compression test was carried out up to the strain level of 0.6 at various temperatures $(700\~1100^{\circ}C)$ and strain rates $(10^{-4}\~10^2/s)$. From the flow stress-strain data, parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations for both microstructures. Then, finite element analysis was performed to predict the final microstructure of the deformed body, which was well accorded with the experimental results.

  • PDF

가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화 (Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy)

  • 이도재;황주영;이경구;윤계림;전충극
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.91-98
    • /
    • 2005
  • Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.

Zr기 필러메탈을 이용한 상용 순 티타늄(CP-Ti) 합금의 저온 브레이징 특성 (Low Temperature Diffusion Brazing of Commercial Pure(CP)-Ti alloy with Zr-based Filler Metal)

  • 선주현;신승용;홍주화
    • 열처리공학회지
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Titanium and its alloys can be usually joined with brazing method. And the alloys should be brazed at low temperature to keep their original microstructure. In this study, the mechanical strength and microstructure of the CP-Ti joint-brazed with $Zr_{54}Ti_{22}Ni_{16}Cu_8$ filler metal having melting temperature of $774{\sim}783^{\circ}C$ were investigated. The tensile strengths of the joint-brazed at $800^{\circ}C$ with $100^{\circ}C/min$ of cooling rate showed more than 400 MPa which was as high as base metal. The $Widmanst{\ddot{a}}tten$ structure consisting of Ti and $Ti_2Ni$ phase was observed in the joint area. However, the tensile strengths of the joint-brazed at $800^{\circ}C$ with $15^{\circ}C/min$ of cooling rate were decreased and the Ti, $(Ti,Zr)_2Ni$ and $Ti_2Ni$ phases were observed at the joint area. It is believed that the $(Ti,Zr)_2Ni$ laves phases could decrease the mechanical strength of the joint and the cooling rate should be controled to get high strength of the titanium joint.