• Title/Summary/Keyword: Wideband Antenna

Search Result 413, Processing Time 0.026 seconds

Design of 0.6~6 GHz Ultra Wideband Quad-ridge Horn Antenna (0.6~6 GHz 초 광대역 쿼드릿지 혼 안테나 설계)

  • Choi, Cheoljin;Lee, Moonhee;Son, Taeho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.77-82
    • /
    • 2019
  • In this paper, a 0.6~6GHz quad-ridge horn antenna which can be used for the antenna measurement of 5.8GHz WiFi system from lowest frequency band of mobile LTE (Long Term Evolution) is designed and implemented. The quad-ridge horn antenna has quadruple ridges of exponential function, a back-short and a cavity. Based on this structure, we design the cavity size, ridge gap and feed gap to have broadband characteristics. For implementation, the plates material of aluminum and copper are used for the horn and four ridges, respectively. And the insulator supports are used to maintain the gap between ridges. By measurement, antenna has the gain of 6.2~13.35dBi with the return loss of less than -6dB (under VSWR 3 : 1) in the entire design band. The results of this study can be widely used to the antenna studies on the mobile communication including low frequency band of LTE, the EMI measurement and the standard calibration measurement.

A Study on the Wideband Spatial Power Combiner with the Printed Dipole Antennas (평면형 다이폴 안테나를 이용한 광대역 공간 전력 합성기에 관한 연구)

  • 이성호;권세용;윤영중;송우영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.677-682
    • /
    • 2004
  • In this paper, A novel spatial power combiner with wideband printed dipole antennas and balanced amplifier is proposed. The wideband spatial power combiner is proposed to improve power capability and bandwidth by using balanced amplifier and wideband printed dipole antenna, respectively, The proposed 4${\times}$1 spatial power combiner with those components has the characteristics that the 3-dB bandwidth is 1.02 GHz (17 %), and the effective isotropic power gain (EIPG) is 24.04 dB at 6 GHz. Also, power combining efficiency is 68.69%.

Design of U-Slot $2{\times}2$ array microstrip wideband antenna for wireless LAN (무선랜용 U-Slot $2{\times}2$ 배열 마이크로스트립 광대역 안테나 설계)

  • Ju Seong-nam;Kim Kab-ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.374-379
    • /
    • 2006
  • In this paper, the high Gain and the wideband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed and fabricated. Firstly to widen the bandwidth of microstrip antenna, U-Slot in rectangular form patch is inserted and used the microstrip line-Coaxial probe feeding method. Secondly, the antenna gain is improved to be embodied in $2{\times}2$ array form. As a result, in this paper, is designed and fabricated 5 GHz Band wideband U-Slot $2{\times}2$ array patch antenna using microstrip line-coaxial probe feeder. The U-Slot $2{\times}2$ array patch antenna were fabricated on the PEC using press-technique that is based on the simulation results. And the Anritsu 37169A vector network analyzer has been used in measurement of a prototype antenna. As a result, it was measured that the superior characteristic of wideband showing approximately 1 GHz ($5.110 GHz{\sim} 6.142 GHz$) of input return loss (VSWR < 2) in resonant frequency of 5 GHz band. And the antenna gain is 13 dBi, in both the E-plane and H-plane measured at 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.87 GHz.

Analysis of W-CDMA System with Smart Antenna for Angular Spread in Realistic Wideband Multipath Channel (광대역 다중경로 실측 채널에서 스마트 안테나를 적용한 광대역 CDMA 시스템의 각도퍼짐에 따른 성능분석)

  • 전준수;김철성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.527-535
    • /
    • 2003
  • In this paper, the performance of W-CDMA system with smart antenna is analyzed for angular spread in realistic wideband multipath channel. The realistic wideband channel is assumed, one of which is JTC channel model. And each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. Several multipaths within one chip are distinguished into each one and the strongest signal is selected. As a result, the performance of the W-CDMA system with smart antenna in realistic wideband multipath channel has been considerably improved in proportion to the increase of angular spread.

Design of a Wideband Double-sided Dipole Array Antenna for a 3.5 GHz band (3.5 GHz대역용 광대역 양면 다이폴 배열 안테나 설계)

  • Kim, GunKyun;Kang, Nyoung-Hak;Rhee, Seung-Yeop;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.61-62
    • /
    • 2018
  • In this paper, we studied a wideband double-sided dipole antenna operating at 3.5 GHz (WiMAX) band. The each printed dipoles are placed on the both sides of the substrate. It can be easily implemented and is suitable for connection with an active circuit. In order to obtain wideband printed dipole characteristics, thick rectangular shaped dipole is adopted. Feeding Circuit for dipole array and balun were designed for impedance matching with a $50{\Omega}$ microstrip feed line. The antenna is designed by simulation for an operation in the frequency range of 3.4~3.7 GHz Simulation results show that the maximum gain in the 3.5 GHz band is 5.5 dBi and the bandwidth with VSWR less than 2 is about 1 GHz.

  • PDF

Compensation Algorithm of Beamforming Error for Wideband Conformal Array Antenna (광대역 컨포멀 위상 배열 안테나의 빔형성 열화 보상 알고리즘)

  • Yoon, Ho-Joon;Lee, Kang-In;Nam, Sang-Wook;Chung, Young-Seek;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.478-486
    • /
    • 2017
  • In this paper, we propose an algorithm for the wideband beamforming in a conformal phased array antenna by compensating the errors. For the wideband beamforming, we used the True Time Delay(TTD), which was fabricated on the RF circuit board to obtain long delay lines. Beamforming errors in the conformal array antenna are the mutual coupling between the array elements, the dispersive error in the TTD circuit, and the quantization error by the digital control. We apply the compensation algorithm to the conformal phased array antenna of wideband 2~4 GHz, and verify the usefulness by comparing the results with the experiment results.

A Design of Quasi-Yagi Antenna Using the New Ultra-Wideband Microstrip-to-CPS Transitions (새로운 초광대역 마이크로스트립-CPS 전이 구조를 이용한 Quasi-Yagi 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.937-942
    • /
    • 2007
  • A new, systematic, simplified design procedure for quasi-Yagi antennas is presented. The design is based on the simple impedance matching among antenna components: i.e., transition, feed, and antenna. This new antenna design is possible due to the newly developed ultra-wideband transition. As design examples, wideband quasi-Yagi antennas are successfully designed and implemented in Ku- and Ka-bands with frequency bandwidths of 53.2% and 29.1%, and antenna gains of $4{\sim}5 dBi$ and $ 5{\sim}5.6 dBi$, respectively. The design method can be applied to other balanced antennas and their arrays.

Wideband horn antenna including circular-polarizer and straight-type mode-converter for Ka-band (Ka-대역 원형 편파기와 직선구조 모드 변환기를 포함한 광대역 혼 안테나)

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.299-304
    • /
    • 2011
  • In this paper, the circular polarized horn antenna composed of circular polarizer and impedance transformer is designed, and fabricated. For the circular polarizer, two types of the polarizer are designed and the electrical performance of them is compared; rectangular waveguide polarizer with $45^{\circ}$-inclined dielectric slab and oval shaped one. Straight type mode converter has a stepped impedance structure and plays a role of converting waveguide TE mode into coaxial TEM mode, and the proposed antenna is designed to directly connect with active components using the feed-through in the input port of the mode converter. Fabricated antenna has the wideband performance, VSWR<1.5 and Axial ratio < 1.0dB, ranging from 30.085 to 30.885 GHz, and the antenna gain is 6.7~7.0 dBi.

CPW-fed Wideband Loop Antenna for Indoor Digital TV Applications (실내 디지털 TV용 CPW-급전 광대역 루프 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1492-1497
    • /
    • 2017
  • In this paper, a design method for a CPW-fed wideband loop antenna for indoor digital TV applications is studied. The proposed loop antenna consists of a square loop and two circular sectors which connect the loop with central feed points, and the CPW feed line is inserted in the lower circular sector. The CPW feed line is designed to match with the 75 ohm port impedance for DTV applications, and the ground slots are etched in order to improve the impedance matching in the middle frequency region. The effects of the gap between the circular sectors and the location and dimension of the ground slots on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized antenna is fabricated on FR4 substrate, and the experiment results show that it operates in the frequency band of 463-1,280 MHz for a VSWR < 2, which assures the operation in the DTV band.

A Study on the Wideband Microstrip Disk Antenna (X대역 마이크로스트립 디스크 안테나에 관한 연구)

  • 정종철;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.2
    • /
    • pp.48-53
    • /
    • 1983
  • This paper proved experimentally that the disc array microstrip antenna designed and manufactured at X-band is capable to use for wide band antenna. This antenna arrayed the discs to have different resonant frequencies log-periodically on printed circuit board. The experimental result of this antenna showed the flat gain and good impedence matching characteristics. The VSWR of this antenna is 2.2 below through the system band.

  • PDF