• 제목/요약/키워드: Wide-gap materials

검색결과 144건 처리시간 0.03초

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

Rheological behavior of dilute bubble suspensions in polyol

  • Lim, Yun-Mee;Dongjin Seo;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.47-54
    • /
    • 2004
  • Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers(Ca) of the order of $10^{-2}$ ~ $10^{-1}$ and for various gas volume fractions ($\phi$). Effects of capillary numbers and gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity of the suspension increases as the gas volume fraction increases, while at low capillary number, the viscosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by a circular cylinder in the two dimensional analysis, numerical results are in good agreement with experimental results.

Controlling Work Function of Graphene by Chemical Doping

  • 이지아
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.628-628
    • /
    • 2013
  • Graphene, a single layer of graphite, has raised extensive interest in a wide scientific community for its extraordinary thermal, mechanical, electrical and other properties [1,2]. However, because of zero-band gap of graphene, it is difficult to apply for electronic applications. To overcome this problem, chemical doping is one of way to opening grahene bandgap. According to experimental results, by changing doping concentration and doping time, it is possible to control work function of graphene. We can obtain results through raman spectroscopy, UPS, Sheet resistance. Moreover, electronic properties of doped graphene were studied by making field effect transistors. We were able to control the doping concentration, dirac point of graphene and work function of graphene by formng n-type, p-type doping materials. In this research, the chemicals of diazonium salts, viologen, etc. were used for extrinsic doping.

  • PDF

국내 포장산업의 정보화 경쟁력에 대한 연구 (A Survey on Competitiveness of Korean Packaging Industry in Information Technology)

  • 김종경;김수일;박인식
    • 한국포장학회지
    • /
    • 제8권1호
    • /
    • pp.32-42
    • /
    • 2002
  • This study were conducted to reveal the awareness and competitiveness of Korean packaging industry in information technology(IT) and e-commerce. For the survey, 114 sample companies were selected representing all packaging materials, equipment and systems, institutes, consulting and trading companies. The trained interviewers spoke to the respondents who were at the position of packaging research and development and were considered knowledgeable about the level of IT in the company. The collected data were analyze in three major categories: IT fundamentals, usages, and company policy. From the results, packaging suppliers were at the very low level of IT fundamentals and uses compared to those of packaging users. The gap between packaging suppliers and users that access the Internet was seriously wide, and this trend was generally due to different size of company. Packaging suppliers were still at the basic level of information-oriented working environment.

  • PDF

600V급 4H-SiC Normally-off JFET의 Simulation 특성 (Simulation characteristics of 600V 4H-SiC Normally-off JFET)

  • 김상철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.138-139
    • /
    • 2007
  • 탄화규소반도체소자는 wide band-gap 반도체 재료로 고전압, 고속스위칭 특성이 우수하여 차세대 전력반도체소자로 매우 유망한 소자이다. 이러한 물리적 특성으로 전력변환소자인 고전압 MOSFET 소자를 개발하기 위한 연구가 활발히 진행되고 있다. 그러나 MOS 소자에서 가장 중요한 게이트 산화막의 특성이 소자에 적용하기에는 그 특성이 많이 취약한 상태이다. 따라서 이러한 단점을 해결하여 고전압 전력변환소자로 적용하기 위하여 게이트 산화막이 필요없는 JFET 소자가 많이 연구되고 있다. 본 논문에서는 JFET 소자를 normally-off type으로 동작시키기 위하여 게이트의 구조, 도핑농도 및 게이트 폭을 조절하여 simulation를 수행하였다. 케이트의 농도 및 접합깊이에 따라 normally-on 또는 off 특성에 큰 영향을 미치고 있으며 게이트 트렌치구조의 깊이에 따라서도 영향을 받는다. 본 simulation 결과 최적의 트렌치 길이, 폭 및 농도로 소자를 구성하여 $1.3m{\Omega}cm^2$의 온-저항 특성을 얻을 수 있었다.

  • PDF

압전 션트를 이용한 패널의 투과소음 저감 성능에 관한 연구 (Performance test for transmitted noise reduction of smart panel using piezoelectric shunt damping)

  • 최진영;김재환;이중근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1120-1125
    • /
    • 2001
  • A new concept of piezoelectric smart panels for noise reduction in wide band frequencies is proposed and their possibility is experimentally investigated. Multi-mode damping is studied by using a newly proposed tuning method. The proposed panels are based on passive shunt damping methods. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. four PZT are attached on smart panel for improving performance of transmission noise reduction. 0 prove the concept of piezoelectric smart panels, an acoustic measurement experiment was performed. The smart panels exhibit a good noise reduction in middle and high frequency ranges due to the mass effects of absorbing materials or/and the air gap. The use of piezoelectric smart panel renders noise reduction at resonance frequency. Noise reduction at multiple resonance frequencies is experimentally investigaed.

  • PDF

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF

공공도서관의 지역 간 격차 해소를 위한 재정지원 방안 (A Study on the Government Financial Support System to Bridge the Regional Gap of Public Libraries in Korea)

  • 차미경;송경진
    • 한국비블리아학회지
    • /
    • 제21권1호
    • /
    • pp.149-160
    • /
    • 2010
  • 본 연구는 보편적 권리로서의 지역주민의 정보접근권의 보장을 위해 공공도서관 기반시설의 지역 간 격차 해소가 필요하다는 입장에서 중앙정부의 공공도서관에 대한 효과적인 재정지원 방안을 수립하는 것을 목표로 수행되었다. 이를 위하여 우선 국가도서관통계시스템에 2008년 12월 31일을 기준으로 입력된 공공도서관 연면적, 사서 수, 장서수, 예산, 자료구입비 등을 16개 광역지자체 별 인구 1인당 및 1관 당 평균을 비교 분석하여 지역 간 격차 현황을 제시 하였다. 또한 공공도서관의 재원구조와 2010년 광역 지역발전특별회계 도입에 따른 재정지원내용의 변화와 문제점을 조사하여 국가가 편성하는 국고보조금제도로의 전환을 중심으로 공공도서관 재정지원제도의 개선 방안을 제시하였다.

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터 (p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process)

  • 이승민;장성철;박지민;윤순길;김현석
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

GaN 단결정에 의해 제조된 $Ga_2O_3$ 나노물질의 구조 (The structure of $Ga_2O_3$ nanomaterials synthesized by the GaN single crystal)

  • 박상언;조채룡;김종필;정세영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.120-120
    • /
    • 2003
  • The metallic oxide nanomaterials including ZnO, Ga$_2$O$_3$, TiO$_2$, and SnO$_2$ have been synthesized by a number of methods including laser ablation, arc discharge, thermal annealing procedure, catalytic growth processes, and vapor transport. We have been interested in preparing the nanomaterials of Ga$_2$O$_3$, which is a wide band gap semiconductor (E$_{g}$ =4.9 eV) and used as insulating oxide layer for all gallium-based semiconductor. Ga$_2$O$_3$ is stable at high temperature and a transparent oxide, which has potential application in optoelectronic devices. The Ga$_2$O$_3$ nanoparticles and nanobelts were produced using GaN single crystals, which were grown by flux method inside SUS$^{TM}$ cell using a Na flux and exhibit plate-like morphologies with 4 ~ 5 mm in size. In these experiments, the conventional electric furnace was used. GaN single crystals were pulverized in form of powder for the growth of Ga$_2$O$_3$ nanomaterials. The structure, morphology and composition of the products were studied mainly by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM).).

  • PDF