• Title/Summary/Keyword: Wide-band signal

Search Result 278, Processing Time 0.024 seconds

Performance Analysis of RAKE Receivers for IR-UWB Systems in Indoor Multipath Radio Channel (실내 다중경로 무선채널의 IR-UWB 시스템에서 레이크 수신기의 성능 분석)

  • Kim, Eun-Cheol;Yoon, Byung-Wan;Yang, Jae-Soo;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.253-256
    • /
    • 2008
  • In this paper, we analyze the performance of RAKE receiver for impulse radio-ultra wide band (IR-UWB) systems in indoor multipath radio channel. Pulse position modulation-time hopping (PPM-TH) signal is considered. And we also consider three types of RAKE receivers, which are ideal RAKE, selective RAKE, and partial RAKE receivers. The indoor channel is modeled as the modified Saleh and Valenzuela (SV) model which has been proposed as a UWB channel model by the IEEE group, IEEE 802.15.SG3a.

  • PDF

A study on the multi-point signal detection, using Passive band-pass filter in FBG Hydrophone (FBG(Fiber Bragg Grating) Hydrophone에서 Passive Band-Pass Filter를 사용한 다중점 신호 검출에 관한 연구)

  • Kim, Kyung-Bok;Kwack, Kea-Dal
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.307-315
    • /
    • 2000
  • To set up the arrays system of FBG(Fiber Bragg Grating) Hydrophone sensor and realize the multi-point signal detection for the wide scope underwater, using WDM(Wavelength Division Multiplexing) method and Passive band-pass filter system, underwater acoustic signal detection of the newly designed two FBG Transducers is successfully experimented. As a result of the experiment, it was possible each signal with different frequent signals is detected for the multi-point up to 1.3KHz in underwater. We can, therefore, prove the possibility on the system design of Hydrophone sensor arrays, using the newly made FBG Transducers.

  • PDF

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

An Algorithm for Estimating Ep/No of UWB Signals (UWB 신호의 Ep/No 추정 알고리즘)

  • Im, Sung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1316-1322
    • /
    • 2004
  • Recently, the UWB (ultra wide-band) wireless communication technology, which provides high data transmission and is capable of linearly trading between throughput and signal-to-noise ratio (SNR), has drawn much attention for short-range wireless networks. Fully exploiting its notable features and minimizing its interference to coexisting other systems require the knowledge of SNR's at receivers In this paper, we propose an algorithm for estimating the pulse energy to noise ratio Ep/No of UWB signal with utilization of outputs from a correlator at a receiver, and evaluate the performance of the proposed algorithm through computer simulation. According to simulation results, the maximum standard deviation is about 1 13 dB with a block size of 500. Except for Ep/No=O and 2 dB cases with a block size of 500, no errors greater than 3 dB were observed in all the remaining experiments. Generally speaking, it improves as the true Ep/No, increases and as the block size increases A notable feature of the proposed algorithm is that it does not reduce the effective throughput because the estimation process does not require sending additional training signal of any specific format.

The Design and Fabrication of Multi-Channel Receiver for Radar System (레이더용 다채널 수신기 설계 및 제작)

  • Kim, Wan-Sik;Lee, Han-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1671-1675
    • /
    • 2012
  • In this paper, we fabricate multi-channel receiver for radar system. This receiver at X-band can be received 8 signal of an identical characteristic, dynamic range has more than 80[dB]. To process direct received signals, this system has the built-in two digital de-modulators which offer the minimum loss on the receiving signal path and has high stability by adding Built-In Test. The gain, noise figure, difference of amplitude and phase on the signal path is respectively $14{\pm}2$[dB], 19[dB], ${\pm}2$[dB], $10^{\circ}$ and below.

Analysis on the Power Spectral Density of Ultra Wideband(UWB) Communication System (초광대역 통신 시스템의 전력 스펙트럼 밀도 분석)

  • Lee, Jung-Suk;Kim, Jong-Han;Kim, Yoo-Chang;Kim, Jung-Sun;Kim, Won-Hoo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.34-40
    • /
    • 2001
  • Ultra Wide Band (UWB) system uses wide band signal, which power spectral density is over all band, It likes as a noise floor, so UWB system can be used without interfering with other communication system. For the first time, we adopted Rayleigh mono pulse antipodal signal which had symmetric characteristic and zero mean. With the power spectral density using stochastic process, we knew that the antipodal signaling scheme removed discrete spectrum and concluded that this had much better spectral suppression, probability of error and data rate than PPM (Pulse Positioning Modulation).

  • PDF

The BER Performance Analysis of UWB System in Multipath Channel (다중 경로 채널에서 초광대역(UWB) 시스템의 BER 성능 분석)

  • Jung, Hyang;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.133-136
    • /
    • 2003
  • UWB(Ultra-Wide Band) system is transmitted using Gaussian monocycle pulse of very short pulse duration less than 1 nsec. Therefore, transmission signal has ultra-wide band spectrum to GHz band of very low power and not interfere with the existing communication system. A collision of multipath waves in UWB system with tarrier frequency very different with general wireless communication system. In this paper, the BER(Bit Error Rate) performance of UWB system applying Binary Phase Shift Keying, Quadrature Phase Shift Keying, 16-Quadrature Amplitude Modulation method under multipath channel using computer simulation is compared and analyzed.

  • PDF

An Improved ToA Estimation in a Compressed Sensing-based UWB System (압축센싱 기반의 UWB 시스템에서 개선된 ToA 추정 기법)

  • Le, Tan N.;Kim, Kwang-Yul;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.376-383
    • /
    • 2011
  • Since the first arrival path may not be the strongest path of UWB(Ultra Wide Band) multipath channels, this makes ToA(Time-of-Arrival) estimation becomes a challengeable issue. Furthermore, because of ultra bandwidth of received signals, the compressed sensing theory is employed to reduce the complexity caused by very high Nyquist sampling rate in coherent UWB receivers. In this paper, we propose a ToA estimation scheme which provides precise estimation performance, while exploiting the benefits of compressed sensing-based UWB receivers. Simulation results show that the proposed scheme can outperform other low complexity schemes in a wide range of signal-to-noise ratios.

Differential- Average Transmitted Reference Ultra Wide Band Communication System (Differential - Average Transmitted Reference Ultra Wide Band 통신 시스템)

  • Kim, Se-Kwon;Kim, Jae-Woon;Shin, Yo-An;Roh, Don-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.81-89
    • /
    • 2009
  • We propose a D-ATR UWB (Differential-Average Transmitted Reference Ultra Wide Band) system based on impulse radio. The TR-UWB systems including traditional TR (Transmitted Reference) and ATR (Average TR), exhibit a problem of reduced data rate, since reference signals are additionally transmitted. To tackle this issue, the transmitter of the proposed D-ATR system employs a differential coding like the conventional D-TR system. In addition, the receiver of the proposed system has the structure that can improve signal-to-noise ratio of the reference template used in the correlation process, by recursively averaging the received reference signals like the conventional ATR system. The simulation results in the IEEE 802.15.4a UWB multipath channel models reveal that the proposed D-ATR system achieves much better bit error rate performance as compared to the conventional D- TR system.

Design of a Wide-band Acousto-Optical Spectrometer for Radio Astronomical Observations (우주전파 관측을 위한 광대역 음향광학 전파분광기 설계)

  • 임인성;민경일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1009-1017
    • /
    • 2001
  • The acousto-optical spectrometer is designed by using 1 GHz bandwidth acousto-optic deflector for radio signal analysis. This system is a high resolution wide band spectrometer which uses I GHz bandwidth and a total of 2,048 channel charge coupled device. When we measured the spectrums of signals deflected by acousto-optical spectrometer, we confirmed the stability of the total system by repetitive observations of the same frequency, and each part of the system worked well. We installed this system onto 60 cm radio telescope, and observed 12CO(J= 1 ∼0) emission lines around CRL 2688, IRC 10216 and NGC 5005 Galaxy center. We could observe effectively very narrow band width radio spectrum as well as wide band radio spectrum. We also confirmed high sensitivity and resolution in observation of 12CO(J-10) omission line of NGC 5005 Galaxy center which is a weak signal.

  • PDF