Browse > Article
http://dx.doi.org/10.7840/KICS.2011.36C.6.376

An Improved ToA Estimation in a Compressed Sensing-based UWB System  

Le, Tan N. (숭실대학교 정보통신공학부 통신 및 정보처리 연구실)
Kim, Kwang-Yul (숭실대학교 정보통신공학부 통신 및 정보처리 연구실)
Shin, Yo-An (숭실대학교 정보통신공학부 통신 및 정보처리 연구실)
Abstract
Since the first arrival path may not be the strongest path of UWB(Ultra Wide Band) multipath channels, this makes ToA(Time-of-Arrival) estimation becomes a challengeable issue. Furthermore, because of ultra bandwidth of received signals, the compressed sensing theory is employed to reduce the complexity caused by very high Nyquist sampling rate in coherent UWB receivers. In this paper, we propose a ToA estimation scheme which provides precise estimation performance, while exploiting the benefits of compressed sensing-based UWB receivers. Simulation results show that the proposed scheme can outperform other low complexity schemes in a wide range of signal-to-noise ratios.
Keywords
ToA(Time-of-Arrival); Ranging; Compressed Sensing; UWB(Ultra Wide Band);
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Guvenc, S. Gezici, and Z. Sahinoglu, "Ultra-wideband range estimation: Theoretical limits and practical algorithms," Proc. IEEE ICUWB 2008, Vol. 3, pp. 93-96, Hannover, Germany, Sept. 2008.
2 D. Dardari, C. C. Chong, and M. Z. Win, "Threshold-based time-of-arrival estimators in UWB dense multipath channels," IEEE Trans. Commun., Vol. 56, No. 8, pp. 1366-1378, Aug. 2008.   DOI   ScienceOn
3 I. Guvenc and Z. Sahinoglu, "Threshold-based TOA estimation for impulse radio UWB systems," Proc. IEEE ICU 2005, pp. 420-425, Zurich, Switzerland, Sept. 2005.
4 I. Guvenc, Z. Sahinoglu, A. F. Molisch, and P. Orlik, "Non-coherent TOA estimation in IR-UWB systems with different signal waveforms," Proc. IEEE BROADNETS 2005, Vol. 2, pp. 1168-1174, Boston, USA, Oct. 2005.
5 J. R. Foerster, "The effects of multipath interference on the performance of UWB systems in an indoor wireless channel," Proc. IEEE VTC 2001-Spring, pp. 1176-1180, Rhodes, Greece, May 2001.
6 R. G. Baraniuk, "Compressive sensing," IEEE Signal Proc. Mag., Vol. 24, No. 4, pp. 118-121, July 2007.
7 J. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Info. Theory, Vol. 53, No. 12, pp. 4655-4666, Dec. 2007.   DOI   ScienceOn
8 IEEE 802.15 TG 4a Channel Model Subcommittee, "IEEE 802.15.4a channel model - Final report," available at http://www.ieee802.org/15/pub/TG4a.html.
9 M. Z. Win and R. A. Scholtz, "Impulse radio: How it works," IEEE Commun. Lett., Vol. 2, No. 2, pp. 36-38, Feb. 1998.   DOI   ScienceOn
10 D. L. Donoho, "Compressed sensing," IEEE Trans. Info. Theory, Vol. 52, No. 4, pp. 1289-1306, Apr. 2006.   DOI   ScienceOn
11 J. L. Parades, G. R. Arce, and Z. Wang, "Compressed sensing for ultrawideband impulse radio," Proc. IEEE ICASSP 2007, Vol. 3, pp. 553-556, Honolulu, USA, Apr. 2007.
12 J. L. Paredes, G. R. Arce, and Z. Wang, "Ultra-wideband compressed sensing: Channel estimation," IEEE Jour. Signal Proc., Vol. 1, No. 3, pp. 383-395, Oct. 2007.
13 J. Y. Lee and R. A. Scholz, "Ranging in a dense multipath environment using an UWB radio link," IEEE Jour. Selected Areas in Commun., Vol. 20, No. 9, pp. 1677-1683, Dec. 2002.   DOI   ScienceOn
14 Federal Communications Commission, "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission," ET Docket 98-153, Apr. 2002.