• Title/Summary/Keyword: Wide output voltage range

Search Result 278, Processing Time 0.03 seconds

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Wide Output Range AC/DC Converter for Rechargeable Battery of Electric Vehicle (광대역 출력을 가지는 전기자동차 배터리 충전용 AC/DC 컨버터)

  • Kim, Young-il;Kim, Hong-jung;Jun, Bum-su;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.73-74
    • /
    • 2016
  • This paper proposes a wide output range AC/DC converter for a rechargeable battery of electric vehicle. In the proposed wide output range AC/DC converter for rechargeable battery of electric vehicle, the main transformer in the DC/DC stage is divided by two. Therefore, if the switch is connected to the middle tap, then half of the maximum voltage is applied. Otherwise, it can be applied the full range of the high voltage by connecting the switch to the whole tab. And also, it is designed to have a wide output voltage range by applying Vin/2 made by changing the full-bridge to half-bridge by using the bridge change switch of the input stage. As it can be supplied the wide range output voltage with a single module, it has the advantage of space utilization and cost reduction effect.

  • PDF

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

A Highly Accurate BiCMOS Cascode Current Mirror for Wide Output Voltage Range (광범위 출력전압을 위한 고정밀 BiCMOS cascode 전류미러)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • A highly accurate wide swing BiCMOS cascode current mirror is proposed. It uses the base-current compensated BJT current mirror. It increases both output impedance and output voltage range by using the npn-NMOS cascode instead of the NMOS-NMOS cascode. The npn transistor copies the input current and the NMOS transistor increases the output impedance for the accurate current mirroring. The proposed current mirror achieves highly constant current for wide output voltage range. Simulation results were verified with measurements performed on a fabricated chip using a 5/16V 0.5um BCD process. It has only $-2.5%{\sim}1.0%$ current error for $0.3V{\sim}16V$ output voltage range.

A Common Capacitor Connected LLC Resonant Converter with Auxiliary Switches Operating Over a Wide Output Voltage Control Range (넓은 출력전압 제어범위에서 동작하는 보조스위치 적용 공통커패시터 연결 LLC 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Ji-Cheol;Kim, Eun-Soo;Jeon, Yong-Seog;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.294-302
    • /
    • 2019
  • A capacitor common connected LLC resonant converter with auxiliary switches for a wide output voltage control range is presented in this paper. The proposed converter can be controlled in two ways to achieve a wide output voltage control range of Vo-3Vo. The first control method is performed through pulse width modulation of the auxiliary switches and primary switching devices. The second control method is conducted through frequency modulation of the primary switching devices configured to operate in full-bridge switching modes, when the auxiliary switches are turned off. The feasibility of the proposed converter is verified by the experimental results of a 5 kW prototype.

A Wide Output Range, High Power Efficiency Reconfigurable Charge Pump in 0.18 mm BCD process

  • Park, Hyung-Gu;Jang, Jeong-A;Cho, Sung Hun;Lee, Juri;Kim, Sang-Yun;Tiwari, Honey Durga;Pu, Young Gun;Hwang, Keum Cheol;Yang, Youngoo;Lee, Kang-Yoon;Seo, Munkyo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.777-788
    • /
    • 2014
  • This paper presents a wide output range, high power efficiency reconfigurable charge pump for driving touch panels with the high resistances. The charge pump is composed of 4-stages and its configuration automatically changes based on the required output voltage level. In order to keep the power efficiency over the wide output voltage range, internal blocks are automatically activated or deactivated by the clock driver in the reconfigurable charge pump minimizing the switching power loss due to the On and Off operations of MOSFET. In addition, the leakage current paths in each mode are blocked to compensate for the variation of power efficiency with respect to the wide output voltage range. This chip is fabricated using $0.18{\mu}m$ BCD process with high power MOSFET options, and the die area is $1870{\mu}m{\times}1430{\mu}m$. The power consumption of the charge pump itself is 79.13 mW when the output power is 415.45 mW at the high voltage mode, while it is 20.097 mW when the output power is 89.903 mW at the low voltage mode. The measured maximum power efficiency is 84.01 %, when the output voltage is from 7.43 V to 12.23 V.

High-linearity voltage-controlled current source circuits with wide range current output (넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로)

  • Cha, Hyeong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.395-398
    • /
    • 2004
  • High-linearity voltage-controlled current sources (VCCSs) circuits for wide voltage-controlled oscillator and automatic gun control were proposed. The VCCS consists of emitter follower for voltage input, two common-base amplifier which their emitter connected for current output, and current mirror which connected the two amplifier for large output current. The VCCS used only five transistors and a resistor without an extra bias circuit. Simulation results show that the VCCS has current output range from 0mA to 300mA over the control voltage range from 1V to 4.8V at supply voltage 5V. The linearity error of output current has less than $1.4\%$ over the current range from 0A to 300mA.

  • PDF

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.