• Title/Summary/Keyword: Wide Range of Duty Cycle

Search Result 34, Processing Time 0.032 seconds

A 0.5-2.0 GHz Dual-Loop SAR-controlled Duty-Cycle Corrector Using a Mixed Search Algorithm

  • Han, Sangwoo;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.152-156
    • /
    • 2013
  • This paper presents a fast-lock dual-loop successive approximation register-controlled duty-cycle corrector (SARDCC) circuit using a mixed (binary+sequential) search algorithm. A wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy have been achieved by utilizing the dual-loop architecture and the binary search SAR that achieves the fast duty-cycle correcting property. By transforming the binary search SAR into a sequential search counter after the first DCC lock-in, the proposed dual-loop SARDCC keeps the closed-loop characteristic and tracks variations in process, voltage, and temperature (PVT). The measured duty cycle error is less than ${\pm}0.86%$ for a wide input duty-cycle range of 15-85 % over a wide frequency range of 0.5-2.0 GHz. The proposed dual-loop SARDCC is fabricated in a 0.18-${\mu}m$, 1.8-V CMOS process and occupies an active area of $0.075mm^2$.

A CMOS Duty Cycle Corrector Using Dynamic Frequency Scaling for Coarse and Fine Tuning Adjustment (코오스와 파인 조정을 위한 다이나믹 주파수 스케일링 기법을 사용하는 CMOS 듀티 사이클 보정 회로)

  • Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.142-147
    • /
    • 2012
  • This paper presents a mixed-mode CMOS duty-cycle corrector (DCC) circuit that has a dynamic frequency scaling (DFS) counter and coarse and fine tuning adjustments. A higher duty-cycle correction accuracy and smaller jitter have been achieved by utilizing the DFS counter that reduces the bit-switching glitch effect of a digital to analog converter (DAC). The proposed circuit has been designed using a 0.18-${\mu}m$ CMOS process. The measured duty cycle error is less than ${\pm}1.1%$ for a wide input duty-cycle range of 25-75% over a wide freqeuncy range of 0.5-1.5 GHz.

Selective Dual Duty Cycle Controlled High Frequency Inverter Using a Resonant Capacitor in Parallel with an Auxiliary Reverse Blocking Switch

  • Saha, Bishwajit;Suh, Ki-Young;Kwon, Soon-Kurl;Mishima, Tomokazu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • This paper presents a new ZCS-PWM high frequency inverter. Zero current switching operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. Dual duty cycle control scheme is used to provide a wide range of high frequency AC output power regulation that is important in many high frequency inverter applications. It found that a complete soft switching operation can be achieved even for low power setting ranges by introducing high-frequency dual duty cycle control scheme. The proposed high frequency inverter is more suitable for consumer induction heating(IH) applications. The operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

A MOSFET's Driver Applied to High-frequency Switching with Wide Range of Duty Cycles

  • Zhang, Zhao;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1402-1408
    • /
    • 2015
  • A MOSFET's gate driver based on magnetic coupling is investigated. The gate driver can meet the demands in applications for wide range of duty cycles and high frequency. Fully galvanic isolation can be realized, and no auxiliary supply is needed. The driver is insensitive to the leakage inductor of the isolated transformer. No gate resistor is needed to damp the oscillation, and thus the peak output current of the gate driver can be improved. Design of the driving transformer can also be made more flexible, which helps to improve the isolation voltage between the power stage and the control electronics, and aids to enhance the electromagnetic compatibility. The driver's operation principle is analyzed, and the design method for its key parameters is presented. The performance analysis is validated via experiment. The disadvantages of the traditional magnetic coupling and optical coupling have been conquered through the investigated circuit.

DUAL DUTY CYCLE CONTROLLED SOFT-SWITCHING HIGH FREQUENCY INVERTER USING AUXILIARY REVERSE BLOCKING SWITCHED RESONANT CAPACITOR

  • Bishwajit, Saha;Suh, Ki-Young;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.129-131
    • /
    • 2006
  • This paper presents a new ZVS-PWM high frequency inverter. The ZVS operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. The operating principle and the operating characteristics of the new high frequency circuit treated here are illustrated and evaluated on the basis of simulation results. It was examined that the complete soft switching operation can be achieved even for low power setting ranges by introducing the high frequency dual duty cycle control scheme. In the proposed high frequency inverter treated here, the dual mode pulse modulation control strategy of the asymmetrical PWM in the higher power setting ranges and the lower power setting ones, the output power of this high frequency inverter could introduce in order to extend soft switching operation ranges. Dual duty cycle is used to provide a wide range of output power regulation that is important in many high frequency inverter applications. It is more suitable for induction heating applications the operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

  • PDF

Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN (IEEE 802.15.4 저속 WPAN에서 듀티 사이클과 비콘 추적의 통합 제어)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • Since most of devices in the IEEE 802.15.4 LR-WPAN are expected to operate on batteries, they must be designed to consume energy in a very conservative way. Two energy conservation algorithms are proposed for the LR-WPAN: DDC (Dynamic Duty Cycle) and DBT (Dynamic Beacon Tracking). The DDC algorithm adjusts duty cycle dynamically depending on channel conditions. The DBT algorithm switches beacon tracking mode on and off adaptively depending on traffic conditions. Combining the two algorithms reduces energy consumption more efficiently for a wide range of input loads, while maintaining frame delivery ratio and average delay at satisfactory levels.

A Single-Stage AC-DC Power Module Converter for Fast-Charger (급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터)

  • LE, Tat-Thang;Choi, Sewan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.

A Study of ZVS Two-Switch Forward Converter Using Auxiliary Switch (보조 스위치를 사용한 ZVS Two-Switch 포워드 컨버터에 대한 연구)

  • Jung, Min-Hyuk;Kim, Yong;Um, Tae-Min;Lee, Kyu-Hun;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.965_966
    • /
    • 2009
  • In this paper, a new soft-switching Two-switch Forward converter topology has been proposed. Compared with conventional two-switch forward converter, the proposed converter employs an auxiliary switch and a clamp capacitor to instead of two reset diodes, not only its duty cycle can exceed 0.5 to achieve wide range input voltage, but also soft switching can be achieved for all switches. Especially, voltage stress across main switches can be clamped at $1/2V_{in}$, voltage stress across auxiliary switch can be clamped at $V_{in}$. In addition, due to clamp capacitor series with the transformer, duty ratio can be extended with equation $V_o=\frac{V_{in}(1-D}D{N}$. Therefore, as a kind of better cost-effective approach, it is very attractive for high input, wide range and high efficiency application.

  • PDF

A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles (새로운 전기 자동차 온보드 충전기용 3-포트 컨버터)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF