• Title/Summary/Keyword: Wide Band-gap

Search Result 245, Processing Time 0.025 seconds

박막트랜지스터 효율 향상을 위한 ZnO 박막의 특성에 대한 연구

  • Park, Yong-Seop;Choe, Eun-Chang;Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.63-63
    • /
    • 2009
  • Many researchers have been studied as active and transparent electrode using ZnO (Zinc oxide) inorganic semiconductor material due to their good properties such as wide band-gap and high electrical properties compared with amorphous-Si. In this study, we fabricated ZnO films by the RF magnetron sputtering method at a low temperature for a channel layer in thin-film transistor (TFT) and investigated the characteristics of sputtered ZnO films. Also, the electrical properties of TFT using ZnO channel layer such as field effect mobility(${\mu}$), threshold voltage ($V_{th}$), and $I_{on/off}$ ratio are investigated for the application of the display and electronic devices.

  • PDF

Transient-State Parameter Extraction and Evaluation of GaN FET (GaN FET의 과도특성 파라미터 추출 및 평가)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Nam-Jun;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.192-193
    • /
    • 2013
  • 본 논문에서는 WBG(Wide Band Gap)특성을 갖는 GaN FET의 과도특성을 분석한다. 먼저, GaN(Gallium Nitride) FET의 공개된 정보를 바탕으로 스위칭 과도 특성과 관련된 파라미터들을 정량적으로 추출하고, GaN FET의 동특성을 반영하는 시뮬레이션 모델을 구성한다. 이 모델을 통하여 Si MOSFET과 비교하여 GaN FET의 성능을 예측한다.

  • PDF

Comparative Loss Analysis of Si MOSFET and GaN FET Power System (Si MOSFET vs. GaN FET Power System의 손실 분석)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Nam-Jun;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.190-191
    • /
    • 2013
  • 본 논문에서는 기존의 Si MOSFET을 사용한 전력시스템과 비교하여 WBG(Wide Band Gap)특성을 갖는 GaN(Gallium Nitride) FET을 사용한 전력시스템을 비교 분석한다. 대표성을 갖는 평가가 가능하도록 가장 일반적인 FB 구조를 대상으로 Si MOSFET과 GaN FET을 각각 적용하고, 다양한 기준 조건에서 효율과 전력 밀도 등 성능을 비교한다. 전체 과정은 수학적 계산 및 시뮬레이션으로 검증한다.

  • PDF

Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs (Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구)

  • Park, Seung-Wook;Hwang, Ung-Jun;Shin, Moo-Whan
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

Controlling Work Function of Graphene by Chemical Doping

  • Lee, Ji-A
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.628-628
    • /
    • 2013
  • Graphene, a single layer of graphite, has raised extensive interest in a wide scientific community for its extraordinary thermal, mechanical, electrical and other properties [1,2]. However, because of zero-band gap of graphene, it is difficult to apply for electronic applications. To overcome this problem, chemical doping is one of way to opening grahene bandgap. According to experimental results, by changing doping concentration and doping time, it is possible to control work function of graphene. We can obtain results through raman spectroscopy, UPS, Sheet resistance. Moreover, electronic properties of doped graphene were studied by making field effect transistors. We were able to control the doping concentration, dirac point of graphene and work function of graphene by formng n-type, p-type doping materials. In this research, the chemicals of diazonium salts, viologen, etc. were used for extrinsic doping.

  • PDF

Implantable and Flexible GaN LED for Biomedical Applications

  • Lee, Geon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.17.1-17.1
    • /
    • 2011
  • Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as a type of implantable LED biosensor and as a therapy tool.

  • PDF

Efficient and color stable phosphorescent White Organic light emitting devices using ultra wide band gap host materials

  • Lee, Jong-Hee;Lee, Jeong-Ik;Song, Ki-Im;Lee, Su-Jin;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1116-1119
    • /
    • 2008
  • We developed phosphorescent white OLEDs with high efficiency and color stability. By engineering device architecture in which confined excitons within the emissive layer by using adequate interlayer and balanced recombination of charge carriers by using stepwise hole transporting layer system, these WOLEDs showed power efficacy of 43.6 lm/W with CRI = 62 and 36 lm/W with CRI = 72 at $100\;cd/m^2$ without outcoupling enhancements.

  • PDF

Study on Photoelectrochemical Etching of Single Crystal 6H-SiC (단결정 6H-SiC의 광전화학습식식각에 대한 연구)

  • 송정균;정두찬;신무환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.117-122
    • /
    • 2001
  • In this paper, we report on photoelectrochemical etching process of 6H-SiC semiconductor wafer. The etching was performed in two-step process; anodization of SiC surface to form a deep porous layer and thermal oxidation followed by an HF dip. Etch rate of about 615${\AA}$/min was obtained during the anodization using a dilute HF(1.4wt% in H$_2$O) electrolyte with the etching potential of 3.0V. The etching rate was increased with the bias voltage. It was also found out that the adition of appropriate portion of H$_2$O$_2$ into the HF solution improves the etching rate. The etching process resulted in a higherly anisotropic etching characteristics and showed to have a potential for the fabrication of SiC devices with a novel design.

  • PDF

Interband optical properties in wide band gap group-III nitride quantum dots

  • Bala, K. Jaya;Peter, A. John
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.13-27
    • /
    • 2015
  • Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in $Ga_{0.9}In_{0.1}N$/GaN and $Al_{0.395}In_{0.605}N$/AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from $50{\AA}$ to $25{\AA}$ of $Ga_{0.9}In_{0.1}N$/GaN ($Al_{0.395}In_{0.605}N$/AlN) quantum dot.

PL spectra of disorderd InGaAs/InGaAsP quantum wells (원자섞임처리한 InGaAs/InGaAsP 양자우물의 PL 스펙트럼 특성)

  • Lee, Jong-Chang;Choi, Won-Jun;Lee, Seok;Woo, Duk-Ha;Kim, Sun-Ho;Choi, Sang-Sam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.258-259
    • /
    • 2000
  • Quantum Well Disordering (QWD) has drawn a considerable attention in recent years$^{(1-3)}$ due to its wide applicability to optoelectronic devices. QWD allows modification of the shape of QW in selected regions, hence it modifies the subband energies in conduction and valance bands$^{(4)}$ . This leads to changes in optical properties such as band gap, absorption coefficient and refractive index. Thus such disordering in selected areas enables monolithic integration of various optoelectronic devices such as lasers, EA/EO modulators, waveguides and optical amplifiers. In this paper, we investigate the quantum well disordering effects on photoluminescence spectra by using experimental measurements and theoretical analysis$^{(5)}$ . (omitted)

  • PDF