• Title/Summary/Keyword: WiFi Fingerprint

Search Result 58, Processing Time 0.024 seconds

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.

Unlabeled Wi-Fi RSSI Indoor Positioning by Using IMU

  • Chanyeong, Ju;Jaehyun, Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.

A Study on Multi-Dimensional learning data composition based on Wi-Fi radio fingerprint (Wi-Fi 전파 지문 기반 다차원 학습 데이터 구성에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.639-640
    • /
    • 2018
  • Currently, the technique of identifying location using radio wave fingerprint is widely used in indoor positioning field. At this time, in order to confirm a successful position, it is necessary to construct the data necessary for learning and testing and to construct the multidimensional data. That is, location data collection and data management technology capable of responding to environmental changes that may occur due to various changes in peripheral radio wave fingerprint such as wireless AP, BLE iBeacon, and mobile terminal are required. Therefore, this paper proposes a technique to construct and manage multidimensional data which is less sensitive to environmental changes of radio wave fingerprinting required for positioning.

  • PDF

Gaussian Interpolation-Based Pedestrian Tracking in Continuous Free Spaces (연속 자유 공간에서 가우시안 보간법을 이용한 보행자 위치 추적)

  • Kim, In-Cheol;Choi, Eun-Mi;Oh, Hui-Kyung
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.177-182
    • /
    • 2012
  • We propose effective motion and observation models for the position of a WiFi-equipped smartphone user in large indoor environments. Three component motion models provide better proposal distribution of the pedestrian's motion. Our Gaussian interpolation-based observation model can generate likelihoods at locations for which no calibration data is available. These models being incorporated into the particle filter framework, our WiFi fingerprint-based localization algorithm can track the position of a smartphone user accurately in large indoor environments. Experiments carried with an Android smartphone in a multi-story building illustrate the performance of our WiFi localization algorithm.

Wi-Fi Fingerprint Location Estimation System Based on Reliability (신뢰도 기반 Wi-Fi 핑거프린트 위치 추정 시스템)

  • Son, Sanghyun;Park, Youngjoon;Kim, Beomjun;Baek, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.531-539
    • /
    • 2013
  • Fingerprinting technique uses the radio signal strength measured reference locations is typically used, although there are many Wi-Fi based location tracking techniques. However, it needs numerous reference locations for precision and accuracy. This paper the analyzes problems of previous techniques and proposes a fingerprinting system using reliability based on a signal strength map. The system collects the signal strength data from a number of reference locations designated by the developer. And then it generates path-loss models to one of the access points for each reference location. These models calculate the predicted signal strength and reliability for a lattice. To evaluate proposed method and system performance, We perform experiments in a $20m{\times}22m$ real indoor environment installed access points. According to the result, the proposed system reduced distance error than RADAR. Comparing the existing system, it reduced about 1.74m.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

A Study on Improving Accuracy of Subway Location Tracking using WiFi Fingerprinting (WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구)

  • An, Taeki;Ahn, Chihyung;Nam, Myungwoo;Park, Jinhong;Lee, Youngseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, an WiFi fingerprinting method based on the k-nn algorithm was applied to improve the accuracy of location tracking of a moving train on a platform and evaluate the performance to minimize the estimation error of location tracking. The data related to the position of the moving train are monitored by the control center for trains and used widely for the safety and comfort of passengers. The train location tracking methods based on WiFi installed by telecom companies were evaluated. In this study, a simulator was developed to consider the environments of two cases; in already installed WiFi devices and new installed WiFi devices. The developed simulator can simulate the localized estimation of the position under a variety of conditions, such as the number of WiFi devices, the area of platform and entry velocity of train. To apply location tracking algorithms, a k-nn algorithm and fuzzy k-nn algorithm were applied selectively according to the underlying condition and also four distance measurement algorithms were applied to compare the error of location tracking. In conclusion, the best method to estimate train location tracking is a combination of the k-nn algorithm and Minkoski distance measurement at a 0.5m grid unit and 8 WiFi AP installed.

A Study on Information Expansion of Neighboring Clusters for Creating Enhanced Indoor Movement Paths (향상된 실내 이동 경로 생성을 위한 인접 클러스터의 정보 확장에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.264-266
    • /
    • 2022
  • In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.

  • PDF

Probabilistic Method to reduce the Deviation of WPS Positioning Estimation (WPS 측위 편차폭을 줄이기 위한 확률적 접근법)

  • Kim, Jae-Hoon;Kang, Suk-Yon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.586-594
    • /
    • 2012
  • The drastic growth of mobile communication and spreading of smart phone make the significant attention on Location Based Service. The one of most important things for vitalization of LBS is the accurate estimating position for mobile object. Focusing on AP's probabilistic position estimation, we develop an AP distribution map and new pattern matching algorithm for position estimation. The developed approaches can strengthen the advantages of Radio fingerprint based Wi-Fi Positioning System, especiall on the algorithms and data handling. Compared on the existing approaches of fingerprint pattern matching algorithm, we achieve the comparable higher performance on both of average error of estimation and deviation of errors. Furthermore all fingerprint data have been harvested from the actual measurement of radio fingerprint of Seoul, Kangnam area. This can approve the practical usefulness of proposed methodology.