• Title/Summary/Keyword: Whole-body MRI

Search Result 89, Processing Time 0.037 seconds

Diffuse Hepatic Uptake of $^{99m}Tc$-DPD on Whole Body Bone Scan: The Influence of MRI Contrast (전신 뼈 검사에서 $^{99m}Tc$-DPD의 미만성 간 섭취: MRI 조영제의 영향)

  • Yun, Jong Jun;Jeong, Ji Uk;Hwang, Ju Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • Purpose : The whole body bone scan on nuclear medicine is a widely accepted examination and procedure. However, unusual nonosseous uptake can be observed, which reflects a rare interaction between the radiopharmacceutical and the patient. This study aimed to evaluate the influence of MRI(Magnetic Resonance Imaging) contrast and $^{99m}Tc$-DPD(Dicarboxpropane diphosphonate) on whole body bone scan. Materials and Methods : We analyzed the 982 patients who were examined by $^{99m}Tc$-DPD on whole body bone scan in nuclear medicine department of pusan national university hospital from january to december 2010. All these 982 patients had MRI contrast administration prior to whole body bone scan. We analyzed laboratory test. Results : 46 patients(men 39, women 7) showed diffuse hepatic uptake on whole body bone scan. These uptakes were disappeared on the follow-up whole body bone scan. There were no significant difference of CBC test, liver function tests and renal function tests. Conclusion : The study might be an indirect evidence that diffuse hepatic and splenic uptake of 99mTc-DPD on whole body bone scan after intravenous administration of Gadolinium(Gd) MRI contrast. To perform a precise examination, Gd-contrast agent should be removed from the body before performing a whole body bone scan.

  • PDF

Preliminaly Result of Whole-body Slotted Tube Resonator for 3.0T MRI

  • Kim, Kyoung-Nam;Park, Bu-Sick;Chung, Sung-Taek
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.151-151
    • /
    • 2001
  • Purpose: 3.0 Tesla whole-body resonator provides a potential to have significant increase in imag quality and resolution in high resolution application such as cardiac, spine and extremit imaging. The aim of this study is to design an optimized 3.0T whole-body coil to produce high sensitivity and quality using slotted tube resonator.

  • PDF

Development of cryostat for whole body MRI (전신촬영용 MRI cryostat 개발)

  • 김성래;류충식;이홍주;오원균;주진득;권오범;권영길;조전욱;배준한
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.39-42
    • /
    • 2000
  • The cryostat with refrigerator for whole body MRI had been designed and fabrication data were discuss in this paper. These results will be applied to commercial MRI cryostat in the fucature.

  • PDF

Disseminated Cysticercosis

  • Park, Soo-Yong;Kong, Min-Ho;Kim, Jung-Hee;Song, Kwan-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.3
    • /
    • pp.190-193
    • /
    • 2011
  • Disseminated cysticercosis is a rare form of cysticercosis in which the cysticerci spread out through the whole body. We report the first case of a 39-year-old Mongolian with disseminated cysticercosis. He visited our hospital with generalized tonic-clonic seizure. After extensive investigation from brain computed tomography (CT), spine magnetic resonance imaging (MRI), whole body MRI and pathologic biopsy, he was diagnosed as having cysticercosis involving the brain, subcutaneous tissue, and skeletal muscles through the whole body. We treated him with the albendazole in which case the followed MRI showed that numbers of cystic lesions were copiously decreased. We report an unsual case of disseminated cysticercosis treated with medical therapy.

Image Evaluation Via $SUV_{LBM}$ for Normal Regions of VOI by Using Whole Body Images Obtained from PET/MRI and PET/CT (F-18 FDG PET/MRI와 PET/CT 전신 영상에서 VOI를 이용한 정상부위의 $SUV_{LBM}$-최대치에 의한 영상평가)

  • Park, Jeong-Kyu;Kim, Sung-Kyu;Cho, Ihn-Ho;Kong, Eun-Jung;Park, Meyong-Hwan
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • The purpose of this research is to compare and analyze $SUV_{LBM}$-maximum of normal regions using VOI (the volume of interest) in order to enhance the diagnostic level in whole body images of PET/CT and PET/MRI for 26 health check-up participants. In particular, we try to set up $SUV_{LBM}$-maximum data that can be used in synchronous evaluation for PET/CT and PET/MRI without contrast media. The evaluation of $SUV_{LBM}$-maximum for normal regions of whole body PET/CT and whole body PET/MRI shows that the image of PET/MRI differs very significantly from the reference image of PET/CT (p<0.0001). However, they exhibit high correlations in view of statistics (R>0.8). From this research, we suggest that the decision in the evaluation of $SUV_{LBM}$-maximum for PET/MRI should be made with the reduction of about 26.3%, while one should decide with the reduction of about 29.3% when the contrast media is used. It is helpful to interpret all image of PET/CT and PET/MRI using $SUV_{LBM}$-maximum for convenience and efficiency.

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasa, Yukikazu;Bascunan, Juan;Hahn, Seungyong;Yao, Weijun
    • Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The unique features of HTS offer opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3 GHz NMR magnet, an "annulus" magnet, and an $MgB_2$whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3 GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$whole-body MRI magnet). The challenges include: 1) a large screening current field detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$magnet).

  • PDF

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasea, Yukikazu;Bascunan, Juan;Hahn, Seung-Yong;Yao, Wejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The unique features of HTS offer Opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3GHz NMR magnet, an "annulus" magnet, and an $MgB_2$ whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$ whole-body MRI magnet). The challenges include: 1) a large screening current Beld detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$ magnet).

Discretized solenoid design of a 1.5 T and a 3.0 T REBCO whole-body MRI magnets with cost comparison according to magnetic flux

  • Wonju Jung;Geonyoung Kim;Kibum Choi;Hyunsoo Park;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.75-80
    • /
    • 2023
  • Rare earth barium copper oxide (REBCO) materials have shown the possibility of high-temperature superconductor (HTS) magnetic resonance imaging (MRI) magnets due to their elevated transition temperature. While numerous MRI magnet designs have emerged, there is a growing emphasis on estimating the cost before manufacturing. In this paper, we propose two designs of REBCO whole-body MRI magnets: (1) 1.5 T and (2) 3.0 T, the standard center field choices for hospital use, and compare their costs based on conductor usage. The basis topology of the design method is based on discretized solenoids to enhance field homogeneity. Magnetic stress calculation is done to further prove the mechanical feasibility of their construction. Multi-width winding technique and outer notch structure are used to improve critical current characteristic. We apply consistent constraints for current margins, sizes, and field homogeneities to ensure an equal cost comparison. A graph is plotted to show the cost increase with magnetic flux growth. Additionally, we compare our designs to two additional MRI magnet designs from other publications with respect to the cost and magnetic flux, and present the linear relationship between them.

Diagnostic Performance of Whole-Body Diffusion-Weighted Imaging Compared to PET-CT Plus Brain MRI in Staging Clinically Resectable Lung Cancer

  • Usuda, Katsuo;Sagawa, Motoyasu;Maeda, Sumiko;Motono, Nozomu;Tanaka, Makoto;Machida, Yuichiro;Matoba, Takuma Matsui Munetaka;Watanabe, Naoto;Tonami, Hisao;Ueda, Yoshimichi;Uramoto, Hidetaka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2775-2780
    • /
    • 2016
  • Background: Precise staging of lung cancer is usually evaluated by PET-CT and brain MRI. Recently, however, whole-body diffusion-weighted magnetic resonance imaging (WB-DWI) has be applied. The aim of this study is to determine whether the diagnostic performance of lung cancer staging by WB-DWI is superior to that of PET-CT+brain MRI. Materials and Methods: PET-CT + brain MRI and WB-DWI were used for lung cancer staging before surgery with 59 adenocarcinomas, 16 squamous cell carcinomas and 6 other carcinomas. Results: PET-CT + brain MRI correctly identified the pathologic N staging in 67 patients (82.7%), with overstaging in 5 (6.2%) and understaging in 9 (11.1%), giving a staging accuracy of 0.827. WB-DWI correctly identified the pathologic N staging in 72 patients (88.9%), with overstaging in 1 (1.2%) and understaging in 8 patients (9.9%), giving a staging accuracy of 0.889. There were no significant differences in accuracies. PET-CT + brain MRI correctly identified the pathologic stages in 56 patients (69.1%), with overstaging in 7 (8.6%) and understaging in 18 (22.2%), giving a staging accuracy of 0.691. WB-DWI correctly identified the pathologic stages in 61 patients (75.3%), with overstaging in 4 (4.9%) and understagings in16(19.7%), giving a staging accuracy of 0.753. There were no significant difference in accuracies. Conclusions: Diagnostic efficacy of WB-DWI for lung cancer staging is equivalent to that of PET-CT + brain MRI.

Actively-Shielded Brain-Only $R^{2}$-Gradient Coil for Localized MRI/MRS (Localized MRI/MRS를 위한 차폐된 두뇌촬영용 $R^{2}$-경사자계코일)

  • Oh, C.H.;Yang, Y.J.;Kim, S.K.;Yi, Y.;Lee, H.K.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.161-164
    • /
    • 1996
  • An actively-shielded $r^{2}$-gradient coil has been developed for brain localized MRI or MRS. Spatial localization is very useful for spatial volume selection in MRI or MR Spectroscopy(MRS). The radial(or $R^{2}-$) gradient coil is useful in reducing the artifact or in improving the SNR by selecting the volume with less number of RF pulses. It is, however, difficult to implement the coil with a gradient intensity strong enough to use it for practical whole-body MRI system. For example, the smallest volume size for selection is just 6 cm in diameter with a 250 Ampere of current driving for a whole-body system (in case of 70-cm-diameter). In this study, an asymetric $r^{2}$-coil with a small diameter of 35 cm has been designed and implemented for brain localized MRI or MRS. An 8-rod high-pass-type birdcage RF coil has also been implemented. The coil set has been developed for 1.0 Tesla Medison MRI system and its performance has been verified experimentally.

  • PDF