• 제목/요약/키워드: Whole genome

검색결과 582건 처리시간 0.022초

Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome

  • Xiaolong Yuan;Yunqing Li;Ting Luo;Wei Bi;Jiaojun Yu;Yi Wang
    • Mycobiology
    • /
    • 제51권1호
    • /
    • pp.36-48
    • /
    • 2023
  • Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.

Comparison of Normalization Methods for Defining Copy Number Variation Using Whole-genome SNP Genotyping Data

  • Kim, Ji-Hong;Yim, Seon-Hee;Jeong, Yong-Bok;Jung, Seong-Hyun;Xu, Hai-Dong;Shin, Seung-Hun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권4호
    • /
    • pp.231-234
    • /
    • 2008
  • Precise and reliable identification of CNV is still important to fully understand the effect of CNV on genetic diversity and background of complex diseases. SNP marker has been used frequently to detect CNVs, but the analysis of SNP chip data for identifying CNV has not been well established. We compared various normalization methods for CNV analysis and suggest optimal normalization procedure for reliable CNV call. Four normal Koreans and NA10851 HapMap male samples were genotyped using Affymetrix Genome-Wide Human SNP array 5.0. We evaluated the effect of median and quantile normalization to find the optimal normalization for CNV detection based on SNP array data. We also explored the effect of Robust Multichip Average (RMA) background correction for each normalization process. In total, the following 4 combinations of normalization were tried: 1) Median normalization without RMA background correction, 2) Quantile normalization without RMA background correction, 3) Median normalization with RMA background correction, and 4) Quantile normalization with RMA background correction. CNV was called using SW-ARRAY algorithm. We applied 4 different combinations of normalization and compared the effect using intensity ratio profile, box plot, and MA plot. When we applied median and quantile normalizations without RMA background correction, both methods showed similar normalization effect and the final CNV calls were also similar in terms of number and size. In both median and quantile normalizations, RMA backgroundcorrection resulted in widening the range of intensity ratio distribution, which may suggest that RMA background correction may help to detect more CNVs compared to no correction.

NGS 기법을 활용한 전장게놈에서의 경제형질 관련 유전자 마커 발굴 (Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome)

  • 김정안;김희수
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1258-1267
    • /
    • 2014
  • 가축의 고 성장률, 강건성, 질병 저항성과 같은 경제적 형질을 발굴하는 것은 매우 중요한 과제이다. 이에 경제적 형질을 발굴하기 위한 방법으로 전통적으로 RFLP, AFLP와 같은 방법이 대두되었으며, 최근 NGS 기법이 발달함에 따라 이러한 경제적 형질을 전장게놈의 수준에서 발굴하려는 노력이 계속되고 있다. 하지만, NGS 기법의 경우 상대적으로 많은 연구 비용이 필요한 실정이다. 이를 극복하기 위한 노력으로써 RNA-seq, RAD-Seq, RRL, MSG, GBS 등과 같은 기법이 활용되고 있다. 본 논문에서는 NGS 기법을 기반으로 한 최근 연구 동향을 확인하고자 하며, 특히 최소의 연구 비용으로 최대의 효과를 낼 수 있는 연구 방법을 소개하는 데 초점을 맞추었다. 또한 이러한 연구 방법이 우수한 경제형질을 가진 가축을 선정하는 데 어떻게 적용될 수 있는지에 대해 토의하였다.

Monitoring of Red Pepper Powder and Seasoned Red-Pepper Sauce using Species-Specific PCR in Conjunction with Whole Genome Amplification

  • Hong, Yewon;Kwon, Kisung;Kang, Tae Sun
    • 한국식품위생안전성학회지
    • /
    • 제33권2호
    • /
    • pp.146-150
    • /
    • 2018
  • 고추는 한국에서 매우 중요한 양념 중 하나이다. 하지만 수입 고춧가루와 다진 양념(다대기)에 부과되는 관세율(45%/270%)의 차이로 인해, 다진 양념이 수입된 후, 건조 및 분쇄 과정을 거쳐 고춧가루로 제작되고 있는 실정이다. 본 연구에서는 종 특이 PCR 기술과 whole-genome amplification 방법을 접목하여 고춧가루(N=45) 및 다진 양념(N=5) 제품의 사용원료(고추, 마늘, 양파, 파, 생강)를 분석하였다. 모니터링 결과, 39개 고춧가루 제품은 표시사항을 준수하였으며, 6개 고춧가루 및 5개 다진 양념 제품은 제조 기준을 충족시키지 못했다. 따라서 분석 제품의 22%가 표시사항을 준수하지 못한 것으로 밝혀졌으며, 본 연구에 사용한 분석 방법은 고춧가루 제품에 사용된 원료분석에 적합한 방법임을 입증하였다.

High-Throughput Development of Polymorphic Simple Sequence Repeat Markers Using Two Whole Genome Sequence Data in Peucedanum japonicum

  • Lee, Junki;Joh, Ho Jun;Kim, Nam-Hoon;Lee, Sang-Choon;Jang, Woojong;Choi, Beom Soon;Yu, Yeisoo;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.134-142
    • /
    • 2017
  • Resource plants are important and have strong potential for a variety of utilities as crops or pharmaceutical materials. However, most resource plants remain wild and thus their utility for breeding and biotechnology is limited. Molecular markers are useful to initiate genetic study and molecular breeding for these understudied resource plants. We collected various wild collections of Peucedanum japonicum which is indigenous resource plants utilized as oriental medicine and leafy vegetables in Korea. In this study, we produced two independent whole genome sequences (WGSs) from two collections and identified large scale polymorphic simple sequence repeat (pSSR) based on our pipeline to develop SSR markers based on comparison of two WGSs. We identified a total of 452 candidate pSSR contigs. To confirm the accuracy and utility of pSSR, we designed ten SSR primer pairs and successfully applied those to seven collections of P. japonicum. The WGS and pSSR candidates identified in this study will be useful resource for genetic research and breeding purpose for the valuable resource plant, P. japonicum.

New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants

  • Kim, Seungill;Choi, Doil
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.55-56
    • /
    • 2018
  • Long terminal repeat retrotransposons (LTR-Rs) are major elements creating new genome structure for expansion of plant genomes. However, in addition to the genome expansion, the role of LTR-Rs has been unexplored. In this study, we constructed new reference genome sequences of two pepper species (Capsicum baccatum and C. chinense), and updated the reference genome of C. annuum. We focused on the study for speciation of Capsicum spp. and its driving forces. We found that chromosomal translocation, unequal amplification of LTR-Rs, and recent gene duplications in the pepper genomes as major evolutionary forces for diversification of Capsicum spp. Specifically, our analyses revealed that the nucleotide-binding and leucine-rich-repeat proteins (NLRs) were massively created by LTR-R-driven retroduplication. These retoduplicated NLRs were abundant in higher plants, and most of them were lineage-specific. The retroduplication was a main process for creation of functional disease-resistance genes in Solanaceae plants. In addition, 4-10% of whole genes including highly amplified families such as MADS-box and cytochrome P450 emerged by the retroduplication in the plants. Our study provides new insight into creation of disease-resistance genes and high-copy number gene families by retroduplication in plants.

Draft Genome Sequence of Latilactobacillus sakei subsp. sakei FBL10, a Putative Probiotic Strain Isolated from Saeujeot (salted fermented shrimp)

  • So-Yun Lee;Dabin Kim;Seung-Min Yang;Eiseul Kim;Hae-Yeong Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.526-530
    • /
    • 2023
  • Here, we report the draft genome sequence of Latilactobacillus sakei subsp. sakei FBL10 isolated from Saeujeot (salted fermented shrimp). The draft genome consists of 2,285,672 bp with a G+C content of 41.1% and contains 2,282 coding genes. Genome analysis revealed that clusters associated with bacteriocin production were identified, in addition to several probiotic properties, such as stress resistance factors and aggregation. On the other hand, antibiotic resistance genes and virulence factors were not present. Pangenome analysis for 32 genomes showed 213 unique genes for FBL10 strain. These results demonstrate the beneficial properties of strain FBL10 as a putative probiotic.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Carcass Traits in Hanwoo Populations

  • Lee, Y.-M.;Han, C.-M.;Li, Yi;Lee, J.-J.;Kim, L.H.;Kim, J.-H.;Kim, D.-I.;Lee, S.-S.;Park, B.-L.;Shin, H.-D.;Kim, K.-S.;Kim, N.-S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권4호
    • /
    • pp.417-424
    • /
    • 2010
  • The purpose of this study was to detect significant SNPs for carcass quality traits using DNA chips of high SNP density in Hanwoo populations. Carcass data of two hundred and eighty nine steers sired by 30 Korean proven sires were collected from two regions; the Hanwoo Improvement Center of National Agricultural Cooperative Federation in Seosan, Chungnam province and the commercial farms in Gyeongbuk province. The steers in Seosan were born between spring and fall of 2006 and those in Gyeonbuk between falls of 2004 and 2005. The former steers were slaughtered at approximately 24 months, while the latter steers were fed six months longer before slaughter. Among the 55,074 SNPs in the Illumina bovine 50K chip, a total of 32,756 available SNPs were selected for whole genome association study. After adjusting for the effects of sire, region and slaughter age, phenotypes were regressed on each SNP using a simple linear regression model. For the significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were selected using a stepwise regression procedure, and inclusion and exclusion of each SNP out of the model was determined at the p<0.001 level. A total of 118 SNPs were detected; 15, 20, 22, 28, 20, and 13 SNPs for final weight before slaughter, carcass weight, backfat thickness, weight index, longissimus dorsi muscle area, and marbling score, respectively. Among the significant SNPs, the best set of 44 SNPs was determined by stepwise regression procedures with 7, 9, 6, 9, 7, and 6 SNPs for the respective traits. Each set of SNPs per trait explained 20-40% of phenotypic variance. The number of detected SNPs per trait was not great in whole genome association tests, suggesting additional phenotype and genotype data are required to get more power to detect the trait-related SNPs with high accuracy for estimation of the SNP effect. These SNP markers could be applied to commercial Hanwoo populations via marker-assisted selection to verify the SNP effects and to improve genetic potentials in successive generations of the Hanwoo populations.

Analysis of unmapped regions associated with long deletions in Korean whole genome sequences based on short read data

  • Lee, Yuna;Park, Kiejung;Koh, Insong
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.40.1-40.9
    • /
    • 2019
  • While studies aimed at detecting and analyzing indels or single nucleotide polymorphisms within human genomic sequences have been actively conducted, studies on detecting long insertions/deletions are not easy to orchestrate. For the last 10 years, the availability of long read data of human genomes from PacBio or Nanopore platforms has increased, which makes it easier to detect long insertions/deletions. However, because long read data have a critical disadvantage due to their relatively high cost, many next generation sequencing data are produced mainly by short read sequencing machines. Here, we constructed programs to detect so-called unmapped regions (UMRs, where no reads are mapped on the reference genome), scanned 40 Korean genomes to select UMR long deletion candidates, and compared the candidates with the long deletion break points within the genomes available from the 1000 Genomes Project (1KGP). An average of about 36,000 UMRs were found in the 40 Korean genomes tested, 284 UMRs were common across the 40 genomes, and a total of 37,943 UMRs were found. Compared with the 74,045 break points provided by the 1KGP, 30,698 UMRs overlapped. As the number of compared samples increased from 1 to 40, the number of UMRs that overlapped with the break points also increased. This eventually reached a peak of 80.9% of the total UMRs found in this study. As the total number of overlapped UMRs could probably grow to encompass 74,045 break points with the inclusion of more Korean genomes, this approach could be practically useful for studies on long deletions utilizing short read data.

Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

  • Kim, HyoYoung;Caetano-Anolles, Kelsey;Seo, Minseok;Kwon, Young-jun;Cho, Seoae;Seo, Kangseok;Kim, Heebal
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.137-145
    • /
    • 2015
  • Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5), Landrace (n = 13), and Duroc (n = 6). An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc. These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs) related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718) in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.