Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.11.1258

Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome  

Gim, Jeong-An (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.24, no.11, 2014 , pp. 1258-1267 More about this Journal
Abstract
Developing economic traits with a high growth rate, robustness, and disease resistance in livestock is an important challenge. RFLP and AFLP are the classical methods used to develop economic traits. Whole-genome-based economic traits have recently been detected with the advent of next-generation sequencing (NGS) technologies. However, NGS technologies are rather costly for use in studies, and RNA-seq, RAD-Seq, RRL, MSG, and GBS have been used to overcome the issue of high costs. In this study, recent NGS-based studies were reviewed, particularly those that focused on minimum costs and maximum effects. Then, we presented further prospects on how to apply for selection of high economic-trait livestock.
Keywords
Genetic marker; NGS technologies; restriction enzyme; whole genome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amaral, A. J., Ferretti, L., Megens, H. J., Crooijmans, R. P., Nie, H., Ramos-Onsins, S. E., Perez-Enciso, M., Schook, L. B. and Groenen, M. A. 2011. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One 6, e14782.   DOI
2 Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., Sunayama-Morita, T. and Stern, D. L. 2011. Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21, 610-617.   DOI
3 Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A. and Johnson, E. A. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376.   DOI
4 Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A. and Galle, R. F., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.   DOI
5 Canovas, A., Rincon, G., Islas-Trejo, A., Wickramasinghe, S. and Medrano, J. F. 2010. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome 21, 592-598.   DOI
6 Altshuler, D., Pollara, V. J., Cowles, C. R., Van Etten, W. J., Baldwin, J., Linton, L. and Lander, E. S. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513-516.   DOI   ScienceOn
7 Baxter, S. W., Davey, J. W., Johnston, J. S., Shelton, A. M., Heckel, D. G., Jiggins, C. D. and Blaxter, M. L. 2011. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6, e19315.   DOI
8 Strillacci, M., Frigo, E., Schiavini, F., Samore, A., Canavesi, F., Vevey, M., Cozzi, M., Soller, M., Lipkin, E. and Bagnato, A. 2014. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet 15, 106.
9 Surget-Groba, Y. and Montoya-Burgos, J. I. 2010. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res 20, 1432-1440.   DOI
10 Swamy, B. P. and Kumar, A. 2013. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 31, 1308-1318.   DOI
11 Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57-63.   DOI   ScienceOn
12 Van Tassell, C. P., Smith, T. P., Matukumalli, L. K., Taylor, J. F., Schnabel, R. D., Lawley, C. T., Haudenschild, C. D., Moore, S. S., Warren, W. C. and Sonstegard, T. S. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5, 247-252.   DOI   ScienceOn
13 Wagner, C. E., Keller, I., Wittwer, S., Selz, O. M., Mwaiko, S., Greuter, L., Sivasundar, A. and Seehausen, O. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol 22, 787-798.   DOI
14 Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. and Johnson, E. A. 2007. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17, 240-248.   DOI
15 Luo, C., Tsementzi, D., Kyrpides, N., Read, T. and Konstantinidis, K. T. 2012. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7, e30087.   DOI
16 Mardis, E. R. 2008. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9, 387-402.   DOI   ScienceOn
17 Mardis, E. R. 2013. Next-generation sequencing platforms. Annu Rev Anal Chem 6, 287-303.   DOI
18 Nielsen, R., Paul, J. S., Albrechtsen, A. and Song, Y. S. 2011. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12, 443-451.   DOI   ScienceOn
19 Onteru, S. K., Fan, B., Nikkila, M. T., Garrick, D. J., Stalder, K. J. and Rothschild, M. F. 2011. Whole-genome association analyses for lifetime reproductive traits in the pig. J Anim Sci 89, 988-995.   DOI
20 Ozaki, K. and Tanaka, T. 2006. Genome-wide association study to identify single-nucleotide polymorphisms conferring risk of myocardial infarction. Methods Mol Med 128, 173-180.   DOI
21 Ozaki, K. and Tanaka, T. 2005. Genome-wide association study to identify SNPs conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci 62, 1804-1813.   DOI
22 Rothammer, S., Seichter, D., Forster, M. and Medugorac, I. 2013. A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. BMC Genomics 14, 908.   DOI
23 Ramos, A. M., Crooijmans, R. P., Affara, N. A., Amaral, A. J., Archibald, A. L., Beever, J. E., Bendixen, C., Churcher, C., Clark, R. and Dehais, P., et al. 2009. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4, e6524.   DOI   ScienceOn
24 Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y. and Shen, D., et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55-60.   DOI
25 Qin, Q., Xu, Y., He, T., Qin, C. and Xu, J. 2012. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 22, 90-106.   DOI
26 Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M. and Smith, M. 1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687-695.   DOI   ScienceOn
27 Shendure, J. and Ji, H. 2008. Next-generation DNA sequencing. Nat Biotechnol 26, 1135-1145.   DOI   ScienceOn
28 Sonah, H., Bastien, M., Iquira, E., Tardivel, A., Legare, G., Boyle, B., Normandeau, E., Laroche, J., Larose, S. and Jean, M., et al. 2013. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8, e54603.   DOI
29 Staden, R. 1979. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6, 2601-2610.   DOI
30 Bonneau, J., Taylor, J., Parent, B., Bennett, D., Reynolds, M., Feuillet, C., Langridge, P. and Mather, D. 2013. Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126, 747-761.   DOI
31 Carnell, A. N. and Goodman, J. I. 2003. The long (LINEs) and the short (SINEs) of it: altered methylation as a precursor to toxicity. Toxicol Sci 75, 229-235.   DOI
32 Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., Li, Y., Liu, X., Zhang, H. and Dong, H., et al. 2014. Genomewide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46, 714-721.   DOI
33 Chepelev, I., Wei, G., Tang, Q. and Zhao, K. 2009. Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37, e106-e106.   DOI
34 Cho, Y., McCouch, S., Kuiper, M., Kang, M. R., Pot, J., Groenen, J. and Eun, M. 1998. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97, 370-380.   DOI   ScienceOn
35 Dekkers, J. C. 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82 E-Suppl, E313-328.
36 Consortium, E. P. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.   DOI   ScienceOn
37 Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. and Blaxter, M. L. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12, 499-510.   DOI   ScienceOn
38 Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S. and Mitchell, S. E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379.   DOI
39 Desta, Z. A. and Ortiz, R. 2014. Genomic selection: genome- wide prediction in plant improvement. Trends Plant Sci 19, 592-601.   DOI
40 Duan, M., Sun, Z., Shu, L., Tan, Y., Yu, D., Sun, X., Liu, R., Li, Y., Gong, S. and Yuan, D. 2013. Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers. Rice 6, 1-15.   DOI   ScienceOn
41 Emerson, K. J., Merz, C. R., Catchen, J. M., Hohenlohe, P. A., Cresko, W. A., Bradshaw, W. E. and Holzapfel, C. M. 2010. Resolving postglacial phylogeography using highthroughput sequencing. Proc Natl Acad Sci USA 107, 16196-16200.   DOI
42 Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A. and Cresko, W. A. 2011. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol 772, 157-178.
43 Gore, M. A., Chia, J. M., Elshire, R. J., Sun, Q., Ersoz, E. S., Hurwitz, B. L., Peiffer, J. A., McMullen, M. D., Grills, G. S. and Ross-Ibarra, J., et al. 2009. A first-generation haplotype map of maize. Science 326, 1115-1117.   DOI
44 Fang, G., Munera, D., Friedman, D. I., Mandlik, A., Chao, M. C., Banerjee, O., Feng, Z., Losic, B., Mahajan, M. C. and Jabado, O. J., et al. 2012. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30, 1232-1239.   DOI
45 Gurung, S., Mamidi, S., Bonman, J. M., Xiong, M., Brown- Guedira, G. and Adhikari, T. B. 2014. Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 9, e108179.   DOI
46 Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., Korlach, J. and Turner, S. W. 2010. Direct detection of DNA methylation during single- molecule, real-time sequencing. Nat Methods 7, 461-465.   DOI   ScienceOn
47 Gomez-Raya, L., Olsen, H. G., Lingaas, F., Klungland, H., Vage, D. I., Olsaker, I., Talle, S. B., Aasland, M. and Lien, S. 2002. The use of genetic markers to measure genomic response to selection in livestock. Genetics 162, 1381-1388.
48 Grossi, D. D., Buzanskas, M. E., Grupioni, N. V., de Paz, C. C., Regitano, L. C., de Alencar, M. M., Schenkel, F. S. and Munari, D. P. 2014. Effect of IGF1, GH, and PIT1 markers on the genetic parameters of growth and reproduction traits in Canchim cattle. Mol Biol Rep [Epub ahead of print].
49 Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A. and Cresko, W. A. 2010. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6, e1000862.   DOI
50 Kozarewa, I. and Turner, D. J. 2011. Amplification-free library preparation for paired-end Illumina sequencing. Methods Mol Biol 733, 257-266.   DOI
51 Hyten, D. L., Cannon, S. B., Song, Q., Weeks, N., Fickus, E. W., Shoemaker, R. C., Specht, J. E., Farmer, A. D., May, G. D. and Cregan, P. B. 2010. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11, 38.   DOI   ScienceOn
52 Lander, E. S. and Waterman, M. S. 1988. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231-239.   DOI
53 International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436, 793-800.   DOI   ScienceOn
54 Kerstens, H. H., Crooijmans, R. P., Veenendaal, A., Dibbits, B. W., Chin, A. W. T. F., den Dunnen, J. T. and Groenen, M. A. 2009. Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics 10, 479.   DOI
55 Kumar, S. and Blaxter, M. L. 2010. Comparing de novo assemblers for 454 transcriptome data. BMC genomics 11, 571.   DOI
56 Li, H., Ruan, J. and Durbin, R. 2008. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18, 1851-1858.   DOI   ScienceOn
57 Li, R., Li, Y., Kristiansen, K. and Wang, J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713-714.   DOI   ScienceOn
58 Luca, F., Hudson, R. R., Witonsky, D. B. and Di Rienzo, A. 2011. A reduced representation approach to population genetic analyses and applications to human evolution. Genome Res 21, 1087-1098.   DOI
59 Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S. and Jaenisch, R. 2005. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33, 5868-5877.   DOI   ScienceOn
60 Wang, Y., Wen, Z., Shen, J., Cheng, W., Li, J., Qin, X., Ma, D. and Shi, Y. 2014. Comparison of the performance of Ion Torrent chips in noninvasive prenatal trisomy detection. J Hum Genet 59, 393-396.   DOI
61 Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V. and Roth, G. T., et al. 2008. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872-876.   DOI   ScienceOn
62 Witt, S. H., Kleindienst, N., Frank, J., Treutlein, J., Muhleisen, T., Degenhardt, F., Jungkunz, M., Krumm, B., Cichon, S. and Tadic, A., et al. 2014. Analysis of genome- wide significant bipolar disorder genes in borderline personality disorder. Psychiatr Genet 24, 262-265.   DOI
63 Xie, W., Feng, Q., Yu, H., Huang, X., Zhao, Q., Xing, Y., Yu, S., Han, B. and Zhang, Q. 2010. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107, 10578-10583.   DOI
64 Amaral, A. J., Megens, H. J., Kerstens, H. H., Heuven, H. C., Dibbits, B., Crooijmans, R. P., den Dunnen, J. T. and Groenen, M. A. 2009. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 10, 374.   DOI
65 You, X., Shu, L., Li, S., Chen, J., Luo, J., Lu, J., Mu, Q., Bai, J., Xia, Q. and Chen, Q., et al. 2013. Construction of high-density genetic linkage maps for orange-spotted grouper Epinephelus coioides using multiplexed shotgun genotyping. BMC Genet 14, 113.
66 Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J. and Zhang, Q. 2011. Gains in QTL detection using an ultra- high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6, e17595.   DOI
67 Park, K. D., Park, J., Ko, J., Kim, B. C., Kim, H. S., Ahn, K., Do, K. T., Choi, H., Kim, H. M. and Song, S., et al. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13, 473.   DOI   ScienceOn
68 Christodoulou, D. C., Gorham, J. M., Herman, D. S. and Seidman, J. 2011. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease. Curr Protoc Mol Biol 12.