• Title/Summary/Keyword: Whole body imaging

Search Result 166, Processing Time 0.022 seconds

Evaluation of exposure to ionizing radiation of medical staff performing procedures with glucose labeled with radioactive fluorine - 18F-FDG

  • Michal Biegala;Marcin Brodecki;Teresa Jakubowska;Joanna Domienik-Andrzejewska
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.335-339
    • /
    • 2024
  • Employees of nuclear medicine facilities performing medical procedures with the use of open radioactive sources require continuous detailed control of exposure to ionizing radiation. Thermoluminescent (TL) detectors placed in dosimeters: for the whole body, for lenses, ring and wrist dosimeters were used to assess exposure. The highest whole-body exposure of (1.70 ± 1.09) µSv/GBq was recorded in nurses administering radiopharmaceutical to patients. The highest exposure to lenses and fingers was recorded for employees of the quality control zone and it was (8.08 ± 2.84) µSv/GBq and a maximum of (1261.46 ± 338.93) µSv/GBq, respectively. Workers in the production zone received the highest doses on their hands, i.e. (175.67 ± 13.25) µSv/GBq. The measurements performed showed that the analyzed workers may be classified as exposure category A. Wrist dosimeters are not recommended for use in isotope laboratories due to underestimation of ionizing radiation doses. Appropriately selected shields, which significantly reduce the dose received by employees, must be used in isotope laboratories. Periodic measurements confirmed that the appropriate optimization of exposure reduces the radiation doses received by employees.

Effects of Whole Body Electromyostimulation on Muscle Activity and Muscle Thickness of Rectus Femoris, and Muscle Thickness of Abdominis Muscle in Healthy Adults

  • Lee, Keun-hyo;Park, Se-jin;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Whole body-electromyostimulation (WB-EMS) is widely used for the rehabilitation and recovery of patients with various neuromusculoskeletal disorders. Objects: To objectively measure changes in lower extremity and abdominal muscles after sit-to-stand dynamic movement training using WB-EMS. Methods: A total of 46 healthy adults (23 experimental and 23 control subjects) performed sit-to-stand exercise; the experimental group with WB-EMS, and the control group without WB-EMS. The muscle activity of the lower extremity, and the muscle thickness of the lower extremity and abdominal muscles were measured before and after the intervention. Results: In terms of electromyographic activity, there was a significant interaction effect for the rectus femoris (RF) muscle (F=30.212, p=.000). With regards to ultrasonographic imaging, the muscle thickness of the RF muscle had a significant interaction effect at the muscle contraction ratio (F=8.071, p=.007). The deep abdominal muscles, such as the transverse abdominal (TrA) and internal oblique (IO) muscles, also showed significant interaction effects at the muscle contraction ratio (F=5.474, p=.024, F=24.151, p=.000, respectively). Conclusion: These findings suggest that WB-EMS may help to improve the muscular activity of the RF muscle, and the muscle thickness of the RF muscle and deep muscles such as the TrA and IO muscles.

Temporomandibular joint yinyang balance treatment improves cervical spine alignment in pain patients, a medical imaging study (통증환자에서 턱관절 경락음양 균형치료의 경추정렬 개선효과)

  • Yin, Chang-Shik;Lee, Young-Jun;Lee, Young-Jin
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.37-45
    • /
    • 2007
  • Objectives : Temporomandibular joint (TMJ) balance is known to be intricately integrated with nervous system, cervical spine, and meridian system balance. This retrospective study with one-group pretest-posttest design reviewed cervical spine imaging data to provide evidence of spinal alignment improving effect of TMJ balance treatment. Methods : Cervical spine imaging data including computed tomography and simple x-ray of 25 cases with painful condition were reviewed to explore any change in cervical alignment on wearing the intraoral device for TMJ balance treatment of functional cerebrospinal therapy. Results : Cervical spine alignment significantly improved on wearing the intraoral device. Conclusions : TMJ balance treatment improves cervical spinal alignment, which may be a firm basis to proceed with further research of TMJ balance therapy as a way of balancing the whole-body meridian system.

  • PDF

Shielded High-Order Gradient Coil Design for Magnetic Resonance Spectroscopy and Imaging (자기공명분석과 영상촬영을 위한 차폐된 고차경사자계코일의 설계)

  • Oh, Chang-Hyun;Hilal, Sadek K.;Yi, Yun;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.45-48
    • /
    • 1993
  • High-order field gradients are useful for spatial localization of a volume of interest and dynamic range improvement of signal detection in NMR (Nuclear Magnetic Resonance) spectroscopy and imaging. This paper proposes a design method of shielded high-order gradient coils to reduce tile effect of eddy current on tile spectroscopy and imaging results. According to the experimental results, the shielded gradient coils produce less than 2 % eddy current compared to non-shielded coils. Two shielded $z^2$ gradient coils have been designed and constructed for 1.5 T whole-body and 3.0 T animal NMR imaging systems. Experimental results are in good agreement with the theoretically expected behavior and show the utility of the shielded high-order gradient coils.

  • PDF

Clinical Application of PET in Abdominal Cancers (소화기 암에서 PET의 임상적 의의)

  • Choi, Chang-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Clinical application of positron emission tomography (PET) is rapidly increasing for the defection and staging of cancer at whole-body studios performed with the glucose analogue tracer 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG). Although FDG PET cannot match the anatomic resolution of conventional imaging techniques in the liver and the other abdominal organs, it is particularly useful for identification and characterization of the entire body simultaneously. FDG PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterizing of indeterminate soft-tissue masses. Most abdominal cancer requires surgical management. FDG PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. The abdominal cancers, such as gastroesophageal cancer, colorectal cancer, liver cancer and pancreatic cancer, are common malignancies in Korea, and PET is one of the most promising and useful methodologies for the management of abdominal cancers.

Analysis of the Spatial Dose Rates According to the Type of Radiation Source Used in Multi-bed Hospital Room (다인병실에서 이용되는 방사선원의 종류에 따른 공간선량률 분석)

  • Jang, Dong-Gun;Kim, Junghoon;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.407-413
    • /
    • 2017
  • Medical radiation offers significant benefits in diagnosing and treating patients, but it also generates unnecessary radiation exposure to those nearby. Accordingly, the objective of the present study was to analyze spatial dose rate according to types of radiation source term in multi-bed hospital rooms occupied by patients and general public. MCNPX was used for geometric simulation of multi-bed hospital rooms and radiation source terms, while the radiation source terms were established as whole body bone scan patients and imaging using a portable X-ray generator. The results of simulation on whole body bone scan patients showed $3.46{\mu}Sv/hr$ to another patient position, while experimental results on imaging using a portable X-ray generator showed $1.47{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in chest imaging and $2.97{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in abdomen imaging. Multi-bed hospital room, unnecessary radiation generated in the surrounding patients, while legal regulations and systematic measures are needed for radiation exposure in multi-bed hospital rooms that are currently lacking in Korea.

Medical Imaging and Nuclear Molecular Imaging Probes for Pulmonary Fibrosis Diagnosis

  • Heesu Ahn;Yong Jin Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.103-111
    • /
    • 2022
  • Idiopathic pulmonary fibrosis (IPF) is a progressive disease caused by some risk factors, including smoking, viral infection, toxic substances, and radiation, that decline lung function of fresh oxygen and blood delivery throughout the body. Patients with pulmonary fibrosis have suffered from breathing and cough and the average survival rate is only 3 years after diagnosis. Therefore, it is significant to diagnose IPF and start treatment in enough time. Usually, lung biopsy is available to diagnose localized pulmonary fibrotic sites directly. However, it is insufficient to visualize whole lung tissue, and also it has a risk of infection for patients. In the clinic, medical imaging systems can diagnose pulmonary fibrosis non-invasively without infection. In this review, we introduce current medical imaging systems used to diagnose pulmonary fibrosis, including CT, MRI, and nuclear medicine. Further, we introduce several molecular imaging probes targeting specific biomarkers which are expressed in pulmonary fibrosis. Through this paper, it is expected that it would be helpful to understand the latest knowledge and research trends on pulmonary fibrosis diagnostic imaging.

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.

Motion Correction in PET/CT Images (PET/CT 영상 움직임 보정)

  • Woo, Sang-Keun;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.172-180
    • /
    • 2008
  • PET/CT fused image with anatomical and functional information have improved medical diagnosis and interpretation. This fusion has resulted in more precise localization and characterization of sites of radio-tracer uptake. However, a motion during whole-body imaging has been recognized as a source of image quality degradation and reduced the quantitative accuracy of PET/CT study. The respiratory motion problem is more challenging in combined PET/CT imaging. In combined PET/CT, CT is used to localize tumors and to correct for attenuation in the PET images. An accurate spatial registration of PET and CT image sets is a prerequisite for accurate diagnosis and SUV measurement. Correcting for the spatial mismatch caused by motion represents a particular challenge for the requisite registration accuracy as a result of differences in PET/CT image. This paper provides a brief summary of the materials and methods involved in multiple investigations of the correction for respiratory motion in PET/CT imaging, with the goal of improving image quality and quantitative accuracy.

Advanced Imaging Applications for Locally Advanced Cervical Cancer

  • Petsuksiri, Janjira;Jaishuen, Atthapon;Pattaranutaporn, Pittayapoom;Chansilpa, Yaowalak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1713-1718
    • /
    • 2012
  • Advanced imaging approaches (computed tomography, CT; magnetic resonance imaging, MRI; $^{18}F$-fluorodeoxyglucose positron emission tomography, FDG PET) have increased roles in cervical cancer staging and management. The recent FIGO (International Federation of Gynecology and Obstetrics) recommendations encouraged applications to assess the clinical extension of tumors rather than relying on clinical examinations and traditional non-cross sectional investigations. MRI appears to be better than CT for primary tumors and adjacent soft tissue involvement in the pelvis. FDG-PET/CT has increased in usage with a particular benefit for whole body evaluation of tumor metabolic activity. The potential benefits of advanced imaging are assisting selection of treatment based upon actual disease extent, to adequately treat a tumor with minimal normal tissue complications, and to predict the treatment outcomes. Furthermore, sophisticated external radiation treatment and brachytherapy absolutely require advanced imaging for target localization and radiation dose calculation.