DOI QR코드

DOI QR Code

Medical Imaging and Nuclear Molecular Imaging Probes for Pulmonary Fibrosis Diagnosis

  • Heesu Ahn (Division of Applied RI, Korea Institute of Radiological and Medical Sciences) ;
  • Yong Jin Lee (Division of Applied RI, Korea Institute of Radiological and Medical Sciences)
  • Received : 2022.07.08
  • Accepted : 2022.12.06
  • Published : 2022.12.30

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive disease caused by some risk factors, including smoking, viral infection, toxic substances, and radiation, that decline lung function of fresh oxygen and blood delivery throughout the body. Patients with pulmonary fibrosis have suffered from breathing and cough and the average survival rate is only 3 years after diagnosis. Therefore, it is significant to diagnose IPF and start treatment in enough time. Usually, lung biopsy is available to diagnose localized pulmonary fibrotic sites directly. However, it is insufficient to visualize whole lung tissue, and also it has a risk of infection for patients. In the clinic, medical imaging systems can diagnose pulmonary fibrosis non-invasively without infection. In this review, we introduce current medical imaging systems used to diagnose pulmonary fibrosis, including CT, MRI, and nuclear medicine. Further, we introduce several molecular imaging probes targeting specific biomarkers which are expressed in pulmonary fibrosis. Through this paper, it is expected that it would be helpful to understand the latest knowledge and research trends on pulmonary fibrosis diagnostic imaging.

Keywords

Acknowledgement

This research was funded by the National Research Foundation of Korea (NRF-2020M2D9A2093964) funded by the Korean Government (MSIT). This work was also supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by MSIT, the Republic of Korea (No. 50461-50536-2022).

References

  1. Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2020;201:564-74. https://doi.org/10.1164/rccm.201905-1017OC
  2. Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred lung. an update on radiation-induced pulmonary fibrosis. Front Med (Lausanne) 2020;7:585756.
  3. Hewson T, McKeever TM, Gibson JE, Navaratnam V, Hubbard RB, Hutchinson JP. Timing of onset of symptoms in people with idiopathic pulmonary fibrosis. Thorax 2017;210177.
  4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018;553:446-54. https://doi.org/10.1038/nature25183
  5. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:e278S-e313S.
  6. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res 2014;3:242-9.
  7. S Tyldesley CB, K Schulze, H Walker, W J Mackillop. Estimating the need for radiotherapy for lung cancer Int J Radiation Oncology Biol Phys 2001;49:973-85. https://doi.org/10.1016/S0360-3016(00)01401-2
  8. Benveniste MF, Gomez D, Carter BW, Betancourt Cuellar SL, Shroff GS, Benveniste APA, et al. Recognizing radiation therapy-related complications in the chest. Radiographics 2019;39:344-66. https://doi.org/10.1148/rg.2019180061
  9. Montesi SB, Desogere P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019;129:24-33. https://doi.org/10.1172/JCI122132
  10. Caravan P, Yang Y, Zachariah R, Schmitt A, Mino-Kenudson M, Chen HH, et al. Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 2013;49:1120-6. https://doi.org/10.1165/rcmb.2013-0039OC
  11. Schmidt-Ullrich RK, Dent P, Grant S, Mikkelsen RB, Valerie K. Signal transduction and cellular radiation responses. Radiat Res 2000;153:245-57. https://doi.org/10.1667/0033-7587(2000)153[0245:STACRR]2.0.CO;2
  12. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. Journal of Clinical Investigation 2002;110:341-50. https://doi.org/10.1172/JCI0215518
  13. Zhou S, Nissao E, Jackson IL, Leong W, Dancy L, Cuttitta F, et al. Radiation-induced lung injury is mitigated by blockade of gastrin-releasing peptide. Am J Pathol 2013;182:1248-54. https://doi.org/10.1016/j.ajpath.2012.12.024
  14. Beziere N, Fuchs K, Maurer A, Reischl G, Bruck J, Ghoreschi K, et al. Imaging fibrosis in inflammatory diseases: targeting the exposed extracellular matrix. Theranostics 2019;9:2868-81. https://doi.org/10.7150/thno.28892
  15. Ley B, Collard HR, King TE, Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2011;183:431- 40. https://doi.org/10.1164/rccm.201006-0894CI
  16. Baues M, Dasgupta A, Ehling J, Prakash J, Boor P, Tacke F, et al. Fibrosis imaging: current concepts and future directions. Adv Drug Deliv Rev 2017;121:9-26. https://doi.org/10.1016/j.addr.2017.10.013
  17. Rizk NW, Lillington GA. Needle, transbronchial, thoracoscopic, or open lung biopsy in interstitial lung disease. Curr Opin Pulm Med 1995;1:376-82.
  18. Wu CC, Maher MM, Shepard JA. Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol 2011; 96:W678-82.
  19. Zhou Y, Chen H, Ambalavanan N, Liu G, Antony VB, Ding Q, et al. Noninvasive imaging of experimental lung fibrosis. Am J Respir Cell Mol Biol 2015;53:8-13. https://doi.org/10.1165/rcmb.2015-0032TR
  20. John R Mathieson JRM, Catherine A. Staples, Nestor L. Muller. Chronic diffuse infiltrative lung disease: comparison of diagnostic accuracy of CT and chest radiography. Radiology 1989;171: 111-6. https://doi.org/10.1148/radiology.171.1.2928513
  21. Christian Plathow M, MSc,, Minglun Li M, Ping Gong M, Heike Zieher M, Fabian Kiessling M, Peter Peschke P, et al. Computed Tomography Monitoring of Radiation-Induced Lung Fibrosis in Mice. Invest Radiology 2004;39:600-9. https://doi.org/10.1097/01.rli.0000138134.89050.a5
  22. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788-824. https://doi.org/10.1164/rccm.2009-040GL
  23. Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging 2013;28:284-90. https://doi.org/10.1097/RTI.0b013e318298733c
  24. Yamauchi H, Bando M, Baba T, Kataoka K, Yamada Y, Yamamoto H, et al. Clinical Course and Changes in High-Resolution Computed Tomography Findings in Patients with Idiopathic Pulmonary Fibrosis without Honeycombing. PLoS One 2016;11:e0166168.
  25. Colombi D, Dinkel J, Weinheimer O, Obermayer B, Buzan T, Nabers D, et al. Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT). PLoS One 2015;10:e0130653.
  26. Alan C. Best, Anne M. Lynch, Carmen M. Bozic, David Miller, Gary K. Grunwald, David A. Lynch. Quantitative CT Indexes in Idiopathic Pulmonary Fibrosis: Relationship with Physiologic Impairment. Radiology 2003;228:407-14. https://doi.org/10.1148/radiol.2282020274
  27. Nakagawa H, Nagatani Y, Takahashi M, Ogawa E, Tho NV, Ryujin Y, et al. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests. Eur J Radiol 2016:85:125-30. https://doi.org/10.1016/j.ejrad.2015.11.011
  28. Park SO, Seo JB, Kim N, Lee YK, Lee J, Kim DS. Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system. Korean J Radiol 2011;12: 297-307. https://doi.org/10.3348/kjr.2011.12.3.297
  29. Maldonado F, Moua T, Rajagopalan S, Karwoski RA, Raghunath S, Decker PA, et al. Automated quantification of radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eur Respir J 2014;43:204-12. https://doi.org/10.1183/09031936.00071812
  30. Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA. MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 2006;25:464-75. https://doi.org/10.1109/TMI.2006.870889
  31. Ohkubo H, Nakagawa H, Niimi A. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review. Respir Investig 2018;56:5-13. https://doi.org/10.1016/j.resinv.2017.10.003
  32. Zeng J, Liu Z, Shen G, Zhang Y, Li L, Wu Z, et al. MRI evaluation of pulmonary lesions and lung tissue changes induced by tuberculosis. Int J Infect Dis 2019;82:138-46. https://doi.org/10.1016/j.ijid.2019.03.004
  33. Lonzetti L, Zanon M, Pacini GS, Altmayer S, Martins de Oliveira D, Rubin AS, et al. Magnetic resonance imaging of interstitial lung diseases: A state-of-the-art review. Respir Med 2019;155:79-85. https://doi.org/10.1016/j.rmed.2019.07.006
  34. Wielputz M, Kauczor HU. MRI of the lung: state of the art. Diagn Interv Radiol 2012;18:344-53.
  35. Chen DL, Schiebler ML, Goo JM, van Beek EJR. PET imaging approaches for inflammatory lung diseases: Current concepts and future directions. Eur J Radiol 2017;86:371-6. https://doi.org/10.1016/j.ejrad.2016.09.014
  36. Dreyfuss AD, Jahangiri P, Simone CB, 2nd, Alavi A. Evolving role of novel quantitative PET techniques to detect radiation-induced complications. PET Clin 2020;15:89-100. https://doi.org/10.1016/j.cpet.2019.08.003
  37. Fraioli F, Lyasheva M, Porter JC, Bomanji J, Shortman RI, Endozo R, et al. Synergistic application of pulmonary 18F-FDG PET/HRCT and computer-based CT analysis with conventional severity measures to refine current risk stratification in idiopathic pulmonary fibrosis (IPF). Eur J Nucl Med Mol Imaging 2019;46:2023-31. https://doi.org/10.1007/s00259-019-04386-5
  38. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol 1998;25:317-22. https://doi.org/10.1016/S0969-8051(97)00226-6
  39. SMITH TAD. FDG uptake, tumour characteristics and response to therapy: A review. Nuclear Medicine Communications 1998;19:97-105. https://doi.org/10.1097/00006231-199802000-00002
  40. Harris RS, Venegas JG, Wongviriyawong C, Winkler T, Kone M, Musch G, et al. 18F-FDG uptake rate is a biomarker of eosinophilic inflammation and airway response in asthma. J Nucl Med 2011;52:1713-20. https://doi.org/10.2967/jnumed.110.086355
  41. Washino S, Hirai M, Matsuzaki A, Kobayashi Y. 18F-Fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of idiopathic retroperitoneal fibrosis associated with mediastinal fibrosis. Ann Nucl Med 2010;24:225-9. https://doi.org/10.1007/s12149-010-0341-6
  42. R Kubota SY, K Kubota, K Ishiwata, N Tamahashi, T Ido. Intratumoral distribution of fluorine- 18-Fluorodeoxyglucose in vivo: high accumulation in macrophagesand granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972-80.
  43. Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016;55:309-22. https://doi.org/10.1165/rcmb.2016-0121TR
  44. Chen DL, Ferkol TW, Mintun MA, Pittman JE, Rosenbluth DB, Schuster DP. Quantifying pulmonary inflammation in cystic fibrosis with positron emission tomography. Am J Respir Crit Care Med 2006;173:1363-9. https://doi.org/10.1164/rccm.200506-934OC
  45. Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, et al. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med 2017;58:201-7. https://doi.org/10.2967/jnumed.116.184796
  46. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation 2005;112:3157-67. https://doi.org/10.1161/CIRCULATIONAHA.105.583021
  47. Zheng L, Ding X, Liu K, Feng S, Tang B, Li Q, et al. Molecular imaging of fibrosis using a novel collagen-binding peptide labelled with 99mTc on SPECT/CT. Amino Acids 2017;49:89-101. https://doi.org/10.1007/s00726-016-2328-7
  48. Velikyan I, Rosenstrom U, Bulenga TN, Eriksson O, Antoni G. Feasibility of multiple examinations using Ga-labelled collagelin analogues: organ distribution in rat for extrapolation to human organ and whole-body radiation dosimetry. Pharmaceuticals (Basel) 2016; 9.
  49. Velikyan I, Rosenstrom U, Estrada S, Ljungvall I, Haggstrom J, Eriksson O, et al. Synthesis and preclinical evaluation of 68Ga-labeled collagelin analogs for imaging and quantification of fibrosis. Nucl Med Biol 2014;41:728-36. https://doi.org/10.1016/j.nucmedbio.2014.06.001
  50. Desogere P, Tapias LF, Rietz TA, Rotile N, Blasi F, Day H, et al. Optimization of a collagen-targeted PET probe for molecular imaging of pulmonary fibrosis. J Nucl Med 2017;58:1991-6. https://doi.org/10.2967/jnumed.117.193532
  51. Zhou Y, Kim YS, Lu X, Liu S. Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties. Bioconjug Chem 2012;23:586-95. https://doi.org/10.1021/bc200631g
  52. John AE, Luckett JC, Tatler AL, Awais RO, Desai A, Habgood A, et al. Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J Nucl Med 2013;54:2146-52. https://doi.org/10.2967/jnumed.113.120592
  53. Gallezot JD, Nabulsi NB, Holden D, Lin SF, Labaree D, Ropchan J, et al. Evaluation of the lysophosphatidic acid receptor type 1 radioligand 11C-BMT-136088 for lung imaging in rhesus monkeys. J Nucl Med 2018;59:327-33. https://doi.org/10.2967/jnumed.117.195073
  54. Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008;14:45-54. https://doi.org/10.1038/nm1685
  55. Withana NP, Ma X, McGuire HM, Verdoes M, van der Linden WA, Ofori LO, et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci Rep 2016;6:19755.
  56. Koslowski R, Knoch K, Kuhlisch E, Seidel D, Kasper M. Cathepsins in bleomycin-induced lung injury in rat. Eur Respir J 2003;22:427-35. https://doi.org/10.1183/09031936.03.00112903
  57. Buhling F, Rocken C, Brasch F, Hartig R, Yasuda Y, Saftig P, et al. Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 2004;164:2203-16. https://doi.org/10.1016/S0002-9440(10)63777-7
  58. Chapman PJWaHA. Importance of lysosomal cysteine proteases in lung disease. Respir Res review 2000;1:170-7.
  59. Harold A. Chapman RJR, and Guo-Ping Shi. Emerging roles of ror cysteine proteases in human biology. Annu Rev Physiol 1997;59:63-88. https://doi.org/10.1146/annurev.physiol.59.1.63
  60. Yuan L, Zou C, Ge W, Liu Y, Hu B, Wang J, et al. A novel cathepsin L inhibitor prevents the progression of idiopathic pulmonary fibrosis. Bioorg Chem 2020;94:103417.
  61. Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G, Weiskopf K, et al. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem Biol 2012;19:619-28. https://doi.org/10.1016/j.chembiol.2012.03.012
  62. Verdoes M, Oresic Bender K, Segal E, van der Linden WA, Syed S, Withana NP, et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J Am Chem Soc 2013;135:14726-30. https://doi.org/10.1021/ja4056068
  63. Pasquali D, Vassallo P, Esposito D, Bonavolonta G, Bellastella A, Sinisi AA. Somatostatin receptor gene expression and inhibitory effects of octreotide on primary cultures of orbital fibroblasts from Graves' ophthalmopathy. J Mol Endocrinol 2000;25:63-71. https://doi.org/10.1677/jme.0.0250063
  64. Borie R, Fabre A, Prost F, Marchal-Somme J, Lebtahi R, Marchand-Adam S, et al. Activation of somatostatin receptors attenuates pulmonary fibrosis. Thorax 2008;63:251-8. https://doi.org/10.1136/thx.2007.078006
  65. Lebtahi R, Moreau S, Marchand-Adam S, Debray MP, Brauner M, Soler P, et al. Increased uptake of 111In-octreotide in idiopathic pulmonary fibrosis. J Nucl Med 2006;47:1281-7.
  66. Ambrosini V, Zompatori M, De Luca F, Antonia D, Allegri V, Nanni C, et al. 68Ga-DOTANOC PET/CT allows somatostatin receptor imaging in idiopathic pulmonary fibrosis: preliminary results. J Nucl Med 2010;51:1950-5. https://doi.org/10.2967/jnumed.110.079962
  67. Pauline Desogere LFT, Lida P. Hariri, Nicholas J. Rotile, Tyson A. Rietz, Clemens K. Probst, Francesco Blasi, Helen Day, Mari Mino-Kenudson, Paul Weinreb, Shelia M. Violette, Bryan C. Fuchs, Andrew M. Tager, Michael Lanuti, and Peter Caravan. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci Transl Med 2010;5:384-95.
  68. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Selective αv integrin depletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs. Nat Med 2013;19:1617-24. https://doi.org/10.1038/nm.3282
  69. Saini G, Porte J, Weinreb PH, Violette SM, Wallace WA, McKeever TM, et al. αvβ6 integrin may be a potential prognostic biomarker in interstitial lung disease. Eur Respir J 2015;46:486-94. https://doi.org/10.1183/09031936.00210414
  70. Saleem A, Helo Y, Win Z, Dale R, Cook J, Searle GE, et al. Integrin αvβ6 positron emission tomography imaging in lung cancer patients treated with pulmonary radiation therapy. Int J Radiat Oncol Biol Phys 2020;107:370-6. https://doi.org/10.1016/j.ijrobp.2020.02.014
  71. Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 2015;7:288-79.