• 제목/요약/키워드: White-rot fungi

검색결과 152건 처리시간 0.025초

Screening and Evaluation of Streptomyces Species as a Potential Biocontrol Agent against a Wood Decay Fungus, Gloeophyllum trabeum

  • Jung, Su Jung;Kim, Nam Kyu;Lee, Dong-Hyeon;Hong, Soon Il;Lee, Jong Kyu
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.138-146
    • /
    • 2018
  • Two-hundred and fifty-five strains of actinomycetes isolated from soil samples were screened for their antagonistic activities against four well-known wood decay fungi (WDF), including a brown rot fungus, Gloeophyllum trabeum and three white rot fungi Donkioporia expansa, Trametes versicolor, and Schizophyllum commune. A dual culture assay using culture media supplemented with heated or unheated culture filtrates of selected bacterial strains was used for the detection of their antimicrobial activity against four WDF. It was shown that Streptomyces atratus, S. tsukiyonensis, and Streptomyces sp. greatly inhibited the mycelial growth of the WDF tested compared with the control. To evaluate the biocontrol efficacy of S. atratus, S. tsukiyonensis, and Streptomyces sp., wood blocks of Pinus densiflora inoculated with three selected Streptomyces isolates were tested for weight loss, compression strength (perpendicular or parallel to the grain), bending strength, and chemical component changes. Of these three isolates used, Streptomyces sp. exhibited higher inhibitory activity against WDF, especially G. trabeum, as observed in mechanical and chemical change analyses. Scanning electron microscopy showed that cell walls of the wood block treated with Streptomyces strains were thicker and collapsed to a lesser extent than those of the non-treated control. Taken together, our findings indicate that Streptomyces sp. exhibits the potential to be used as a biocontrol agent for wood decay brown rot fungus that causes severe damage to coniferous woods.

백색부후균에 의한 합성염료의 탈색과 리그닌분해 효소의 생산 (Decolorization of Synthetic Dyes and Ligninolytic Enzymes Production by White Rot Fungi)

  • 구본준;김민식;김인만;김선웅;최원혁;이미화;조해진;이태수
    • 한국균학회지
    • /
    • 제40권2호
    • /
    • pp.98-103
    • /
    • 2012
  • 본 연구에서는 백색부후균 중 줄버섯, 단색털구름버섯, 산느타리 및 유관버섯 등의 균사체를 이용하여 congo red, amaranth, orange G 및 methylene blue 등의 합성염료 탈색에 관한 실험을 수행하였다. 실험 결과 줄버섯과 단색털구름버섯은 congo red가 함유된 고체와 액체배지에서 이들 염료를 93~95% 탈색하였으며 amaranth는 약 80%, orange G는 62~70% 탈색시키는 것으로 나타났으나 유관버섯에 의한 3종류의 염료 탈색율은 30% 내외로 매우 낮았다. congo red, amaranth 및 orange G 등 각각의 염료가 첨가된 배지에서의 염료 탈색율은 이들 배지에서 배양한 균사체의 생장과 상관관계가 있는 것으로 나타났다. 그러나 모든 공시 균주는 methylene blue가 함유된 고체와 액체배지에서 methylene blue를 효과적으로 탈색하지 못하는 것으로 나타났다. 공시된 백색부후균의 액체 배지에서의 리그닌 분해효소 생산을 탐색하기 위해 1%의 나프탈렌이 첨가된 PDB 배지에 공시균을 10일 간 배양 후 효소의 종류와 양을 분석한 결과 모든 공시균은 laccase, lignin peroxidase 그리고 manganese peroxidase 등의 효소를 생산하는 것으로 확인되었으며 공시균주 중 줄버섯이 리그닌 분해 효소의 생산이 가장 왕성한 것으로 나타났다.

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Biodegradation of Endocrine-disrupting Bisphenol A by White Rot Fungus Irpex lacteus

  • Shin, Eun-Hye;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1147-1151
    • /
    • 2007
  • Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T. versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture of I. lacteus.

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • 환경생물
    • /
    • 제34권3호
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.

화학(化學)펄프 제조(製造)에 미생물(微生物)의 응용(應用) 가능성(可能性) (On Possible Application of Microorganism for Chemical Pulping)

  • 이선호;윤병호;이원용
    • Journal of Forest and Environmental Science
    • /
    • 제13권1호
    • /
    • pp.143-152
    • /
    • 1997
  • 백색부후균인 Fomes pini (Thore) Lloyd에 의해 처리된 chip을 anthraquinone(AQ)을 첨가하여 화학 펄프화를 실시하여 얻은 결과를 미처리재의 것과 비교하였다. 균처리함에 의해 카파값 20에서의 H factor는 소다와 크라프트 증해에서 각각 17%와 15%가 감소되었다. 이러한 결과는 목재를 백색부후균으로 처리함으로 인해 탈리그닌이 용이해졌음을 나타내는 것이다. 비페놀성 ${\beta}$-O-4 화합물인 veratrylglycerol-${\beta}$-guaiacyl ether(I)와 페놀성 ${\beta}$-O-4 화합물인 syringylglycerol-${\beta}$-syringyl ether(III)에 백색부후균을 작용시키면 반응생성물로서 각각 ${\alpha}$-guaiacoxy-${\beta}$-hydroxypropioveratrone(II)과 ${\alpha}$-syringyloxy-${\beta}$-hydroxypropiosyringone(IV)이 생성됨이 밝혀졌다. 따라서 목재에 균처리를 함으로서 카르보닐기가 리그닌의 측쇄 ${\alpha}$ 위에 도입되어 그로 인해 탈리그닌이 용이하게 된 것으로 여겨진다.

  • PDF

백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌- (Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine-)

  • 김명길;안원영
    • 임산에너지
    • /
    • 제17권1호
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Selection of Newly Isolated Mushroom Strains for Tolerance and Biosorption of Zinc In Vitro

  • Gonen Tasdemir, F.;Yamac, M.;Cabuk, A.;Yildiz, Z.
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.483-489
    • /
    • 2008
  • Nine newly isolated mushroom strains were tested to assess both their zinc tolerance and potential for zinc removal from an aqueous solution. Four strains of ectomycorrhizal fungi, namely Clavariadelphus truncatus (T 192), Rhizopogon roseolus (T 21), Lepista nuda (T 373), and Tricholoma equestre (T 174), along with five strains of white rot fungi, Lenzites betulina (S 2), Trametes hirsuta (T 587), Ganoderma spp. (T 99), Polyporus arcularius (T 438), and Ganoderma carnosum (M 88), were investigated using zinc-amended solid and liquid media. Their biosorption properties were also determined. The colony diameter and dry weight were used as tolerance indices for fungal growth. C. truncatus and T. equestre were not strongly inhibited at the highest concentrations of (225 mg/l) zinc in solid media. The most tolerant four strains with solid media, C. truncatus, G carnosum, T. hirsuta, and T. equestre, were then chosen for tolerance tests in liquid media. An ectomycorrhizal strain, C. truncatus, was also detected as the most tolerant strain in liquid media. However, the metal-tolerant strains demonstrated weak activity in the biosorption studies. In contrast, the highest biosorption activity was presented by a more sensitive strain, G. carnosum. In addition, seven different biosorbent types from G. carnosum (M 88) were compared for their Zn (II) biosorption in batch experiments.