Browse > Article

Selection of Newly Isolated Mushroom Strains for Tolerance and Biosorption of Zinc In Vitro  

Gonen Tasdemir, F. (Nus Anatolian High School)
Yamac, M. (Department of Biology, Faculty of Science and Arts, Eskisehir Osmangazi University)
Cabuk, A. (Department of Biology, Faculty of Science and Arts, Eskisehir Osmangazi University)
Yildiz, Z. (Department of Statistics, Faculty of Science and Arts, Eskisehir Osmangazi University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 483-489 More about this Journal
Abstract
Nine newly isolated mushroom strains were tested to assess both their zinc tolerance and potential for zinc removal from an aqueous solution. Four strains of ectomycorrhizal fungi, namely Clavariadelphus truncatus (T 192), Rhizopogon roseolus (T 21), Lepista nuda (T 373), and Tricholoma equestre (T 174), along with five strains of white rot fungi, Lenzites betulina (S 2), Trametes hirsuta (T 587), Ganoderma spp. (T 99), Polyporus arcularius (T 438), and Ganoderma carnosum (M 88), were investigated using zinc-amended solid and liquid media. Their biosorption properties were also determined. The colony diameter and dry weight were used as tolerance indices for fungal growth. C. truncatus and T. equestre were not strongly inhibited at the highest concentrations of (225 mg/l) zinc in solid media. The most tolerant four strains with solid media, C. truncatus, G carnosum, T. hirsuta, and T. equestre, were then chosen for tolerance tests in liquid media. An ectomycorrhizal strain, C. truncatus, was also detected as the most tolerant strain in liquid media. However, the metal-tolerant strains demonstrated weak activity in the biosorption studies. In contrast, the highest biosorption activity was presented by a more sensitive strain, G. carnosum. In addition, seven different biosorbent types from G. carnosum (M 88) were compared for their Zn (II) biosorption in batch experiments.
Keywords
Basidiomycetes; biosorption; ectomycorrhizal fungi; white rot fungi; zinc tolerance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Baldrian, P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 32: 78-91   DOI   ScienceOn
2 Baldrian, P. and J. Gabriel. 1997. Effect of heavy metals on the growth of selected wood-rotting Basidiomycetes. Folia Microbiol. 42: 521-523   DOI   ScienceOn
3 Blaudez, D., C. Jacob, K. Turnau, J. V. Colpaert, U. Ahonen-Jonnarth, R. Finlay, B. Botton, and M. Chalot. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol. Res. 104: 1366-1371   DOI   ScienceOn
4 Breitenbach, J. and F. Kranzlin. 1991. Fungi of Switzerland, Volume 3. Boletes and Agarics (1st Part). Verlag Mykologia, Lucern
5 Cho, J. S., J. S. Hur, B. H. Kang, P. J. Kim, B. K. Sohn, H. J. Lee, Y. K. Jung, and J. S. Heo. 2001. Biosorption of copper by immobilized biomass of Pseudomonas stutzeri. J. Microbiol. Biotechnol. 11: 964-972
6 Gadd, G. M. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834-840   DOI
7 Garcia, M. A., J. Alonso, and M. J. Melgar. 2005. Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J. Chem. Tech. Biotechnol. 80: 325-330   DOI   ScienceOn
8 Hartley, E., J. W. G. Cairney, F. E. Sanders, and A. A. Meharg 1997. Toxic interactions of metal ions (Cd$^{2+}$, Pb$^{2+}$, Zn$^{2+}$, and Sb$^{3-}$) on in vitro biomass production of ectomycorrhizal fungi. New Phytol. 137: 551-562   DOI   ScienceOn
9 Leyval, C., K. Turnau, and K. Haselwandter. 1997. Effect on heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7: 139-153   DOI   ScienceOn
10 Mohanty, S. S. and C. R. Chaudhury. 2002. Biosorption of Cu and Zn using Volvariella volvacea. Int. J. Environ. Stud. 59: 503-512   DOI   ScienceOn
11 Muraleedharan, T. R., L. Iyengar, and C. Venkobachar. 1995. Screening of tropical wood-rotting mushrooms for copper biosorption. Appl. Environ. Microbiol. 61: 3507-3508
12 Sheng, P. X., Y. P. Ting, J. P. Chen, and L. Hong. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interf. Sci. 275: 131-141   DOI   ScienceOn
13 Vodnik, D., A. R. Byrne, and N. Gogala. 1998. The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol. Res. 102: 953-958   DOI   ScienceOn
14 Yetis, U., A. Dolek, F. B. Dilek, and G. Ozcengiz. 2000. The removal of Pb(II) by Phanerochaete chrysosporium. Water Res. 34: 4090-4100   DOI   ScienceOn
15 Akar, T., A. Cabuk, S. Tunali, and M. Yamac. 2006. Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead (II) ions from aqueous solutions. J. Environ. Sci. Health A 41: 2587-2606   DOI   ScienceOn
16 Ellis, M. B. and C. P. Ellis. 1990. Fungi Without Gills (Hymenomycetes and Gasteromycetes). Chapman and Hall, London
17 Kalac, P. and L. Svoboda. 2000. A review of trace element concentrations in edible mushrooms. Food Chem. 69: 273-281   DOI   ScienceOn
18 Jones, M. D. and T. C. Hutchinson. 1986. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442   DOI   ScienceOn
19 Moser, M. 1983. Keys to Agarics and Boleti. Stuttgart: Gustav, Fischer Verlag, Stuttgart
20 Denny, H. J. and D. A. Wilkins. 1987. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106: 545-553
21 Denny, H. J. and D. A. Wilkins. 1987. Zinc tolerance in Betula spp. III. Variation in response to zinc among ectomycorrhizal associates. New Phytol. 106: 535-544
22 Gadd, G. M. 1992. Biosorption. J. Chem. Tech. Biotechnol. 55: 302-304
23 Lebeau, T., D. Bagot, K. Jézéquel, and B. Fabre. 2002. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 291: 73-83   DOI
24 Rho, J. Y. and J. H. Kim. 2002. Heavy metal biosorption and its significance to metal tolerance of Streptomycetes. J. Microbiol. 40: 51-54
25 Volesky, B. 1990. Removal and recovery of heavy metals by biosorption, pp. 7-43, In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Boca Raton
26 Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J. Microbiol. Biotechnol. 14: 250-255
27 Dixon, R. K. and C. A. Buschena. 1988. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265-271   DOI
28 Gadd, G. M. 1988. Special microbial processes, pp. 301-433. In H. J. Rehm (ed.), Biotechnology. VCH Verlagsgesselschaft, Weinheim
29 Hartley, E., J. W. G. Cairney, and A. A. Meharg. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303-319   DOI   ScienceOn
30 Zhou J. L. 1999. Zn biosorption by Rhizopus arrhizus and other fungi. Appl. Microbiol. Biotechnol. 51: 686-693   DOI   ScienceOn
31 Adriaensen, K., J. Vangronsveld, and J. V. Colpaert. 2006. Zinctolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553-558   DOI   ScienceOn
32 Breitenbach, J. and F. Kranzlin. 1995. Fungi of Switzerland, Volume 4. Agarics (2nd Part). Verlag Mykologia, Lucern
33 Kim, S. W., H. J. Hwang, J. P. Park, Y. J. Cho, C. H Song, and J. W. Yun. 2002. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Lett. Appl. Microbiol. 34: 56-61   DOI   ScienceOn
34 Tam, P. C. F. 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181-187   DOI   ScienceOn
35 Wilkinson, D. M. and N. M. Dickinson. 1995. Metal resistance in trees: The role of mycorrhizae. Oikos 72: 298-300   DOI   ScienceOn
36 Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300   DOI   ScienceOn
37 Lo, W., H. Chua, K. H. Lam, and S. P. Bi. 1999. A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723-2736   DOI   ScienceOn
38 Colpaert, J. V. and J. A. van Assche. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol. 123: 325-333   DOI   ScienceOn
39 Luef, E., T. Prey, and C. P. Kubicek. 1991. Biosorption of zinc by fungal mycelial wastes. Appl. Microbiol. Biotechnol. 34: 688-692   DOI
40 Wilkins, D. A. 1991. The influence of sheathing (ecto-)mycorrhizas on the uptake and toxicity of metals. Agric. Ecosyst. Environ. 35: 245-260   DOI
41 Krupa, P. and J. Kozdroj. 2004. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J. Microbiol. Biotechnol. 20: 427-430   DOI   ScienceOn
42 Curdova, E., L. Vavruskova, M. Suchanek, P. Baldrian, and J. Gabriel. 2004. ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta 62: 483-487   DOI   ScienceOn
43 Bellion, M., M. Courbot, C. Jacob, D. Blaudez, and M. Chalot. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 254: 173-181   DOI   ScienceOn
44 Brown, M. T. and D. A. Wilkins. 1985. Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101-106   DOI   ScienceOn
45 Gadd, G. M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25-60   DOI   ScienceOn
46 Jentschke, G. and D. L. Godbold. 2000. Metal toxicity and ectomycorrhizas. Physiologica Plant. 109: 107-116   DOI   ScienceOn
47 Kierstan, M. P. J. and M. P. Coughlan. 1985. Immobilisation of cells and enzymes by gel entrapment, pp. 39-48. In J. Woodward (ed.), Immobilized Cells and Enzymes - A Practical Approach, IRL Press, Oxford
48 Bucking, H. and W. Heyser. 1994. The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203-212   DOI   ScienceOn
49 Jeon, C., J. Y. Park, and Y. J. Yoo. 2001. Biosorption model for binary adsorption sites. J. Microbiol. Biotechnol. 11: 781-787
50 Rapp, C. and G. Jentscke. 1994. Acid deposition and ectomycorrhizal symbiosis: Field investigations and causal relationships, pp. 183-230. In D. L. Godbold and A. Huttermann (eds.), Effects of Acid Rain on Forest Processes. Wiley-Liss, New York
51 Muraleedharan, T. R. and C. Venkobachar. 1990. Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnol. Bioeng. 35: 320-325   DOI
52 Sing, C. and J. Yu. 1998. Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res. 32: 2746-2752   DOI   ScienceOn
53 Gast, C. H., E. Jansen, J. Bierling, and L. Haanstra. 1988. Heavy metals in mushrooms and their relationships with soil characteristics. Chemosphere 17: 789-799   DOI   ScienceOn
54 Barceloux, D. G. 1999. Zinc. J. Toxicol. Clin. Toxicol. 37: 279-292   DOI
55 Brown, M. T. and I. R. Hall. 1990. Metal tolerance in fungi, pp. 95-104. In J. Shaw (ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton
56 Gabriel, J., J. Vosahlo, and P. Baldrian. 1996. Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol. Tech. 10: 345-348
57 Wang, X. S. and Y. Qin. 2006. Removal of Ni(II), Zn(II), and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass. J. Hazard. Mater. B138: 582-588