• Title/Summary/Keyword: White Alumina

Search Result 27, Processing Time 0.024 seconds

Tool Wear in Turning of the Presintered Low Purity Alumina (저순도 알루미나 예비소결체 선삭시의 공구 마멸)

  • Lee Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • In this study, unsintered, presintered and full-sintered low purity alumina ceramics were machined with various tools to clarify the machinability and the optimum cutting conditions. The main conclusions obtained were as follows. (1) Machined with alloy steel tool, the machinability of the presintered ceramics becomes better with the decrease of presintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide, K01, the tool life in machining the white body was the longest, and the machinability of presintered ceramics becomes poorer with the increase of the presintering temperature. (3) The K01 tools exhibit longer life than the P10 tools in machining both the white body and the ceramics presintered at $1450^\circC$ or higher temperatures, but the P10 tools shows longer tool life than the K10 tools in machining of the ceramics presintered at temperatures below $1450^\circC$.

Magnetic Abrasive Polishing for Internal Face of Seamless Stainless Steel Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.23-27
    • /
    • 2007
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. Either white alumina grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 40% of improvement of surface roughness was achieved when grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with white alumina grains.

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

Magnetic Abrasive Polishing for Internal Face of STS Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen;Lee, Byung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than $40\%$ of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

Influences of Chlorides on the Whiteness in White Portland Cement (백시멘트의 백색도에 미치는 염화물의 영향)

  • 한기성;최상흘;서일영
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.2
    • /
    • pp.3-7
    • /
    • 1976
  • Influences of chlorides(CaCl2, MgCl2, NaCl) on the colouring effect of Fe component in white portland cement was investigated. Chlorides enhance the whiteness of the white portland cement owing to volatilization of Fe2O3 and translation of ferrite composition toward C2F. This translation is caused by consumption of alumina at the formation of C12A7, the formation of which is promoted in the presence of chloride. With decrease of p in ferrite composition C6F1-pAp, transfer of Fe3+ from 4 to 6 coordinated cite is occurred, and as a result, whiteness is raised. Hydration process of the cement containing a small amount of chloride differs little from the one without chloride.

  • PDF

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

Synthesis and Cathodoluminescence of Tetrapod and Multipod-shaped ZnO Nanostructures by Oxidation of Zn in Air Atmosphere (공기 중 대기압 분위기에서 Zn의 산화에 의해 생성된 Tetrapod와 Multipod 형태의 나노구조와 음극선 발광 특성)

  • Lee, Geun-Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.256-260
    • /
    • 2011
  • ZnO nanostructures with tetrapod, needle and multipod shapes were synthesized without catalysts through a simple thermal oxidation of metallic Zn powder in alumina crucible under air atmosphere. X-ray diffraction data revealed that the ZnO nanostructures had wurtzite structure of hexagonal phase. Energy dispersive X-ray (EDX) spectra showed that the ZnO was of high purity. After the oxidation of Zn powder, white colored product was mainly observed and yellow colored product was observed only a very little on the surface of the oxidized source materials. The white product consisted of tetrapods, while yellow product was composed of needles and multipods. Cathodoluminescece spectra showed that the crystalline quality of tetrapods was better that those of needles and multipods.

Treatment and Recovery of Valuable Materials from Aluminum Dross by Leaching (침출에 의한 알루미늄 드로스의 처리 및 유용성분의 회수)

  • Nguyen Thi, Thuy Nhi;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.77-84
    • /
    • 2017
  • White and black dross are resulted from the recycling of aluminum. There are no established processes to recover valuable materials from black dross. Hydrometallurgical processes seem to be suitable for the treatment of aluminum dross. The salts in the black dross are recovered by dissolving with water. The residues are treated by either alkaline or acid leaching. Although the leaching rate of alumina by NaOH is lower than that by acid, its intermediates are more suitable to the production of alumina-based materials. The future direction for the treatment and recovery of valuable materials from aluminum dross is discussed.

Sintering and the Optical Properties of Mn3O4-added Al2O3 (Mn3O4를 첨가한 Al2O3 세라믹스의 소결 및 광학 특성)

  • Kim, Jin-Ho;Baik, Seung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.539-545
    • /
    • 2016
  • Alumina added with Mn3O4 up to 7.5 cat% of Mn was prepared by conventional ceramic processing, and the sintering behavior and the optical properties of which were studied as functions of Mn content. Densification and grain growth of alumina were enhanced by Mn addition up to 0.75 cat% but was leveled off at higher concentrations. XRD revealed that $Al_2MnO_4$(galaxite) was formed as a second phase in the specimens with more than 0.75 cat% of Mn. Thus it is believed that either the solid solution effect of Mn or the Zener effect of $Al_2MnO_4$ becomes predominant in the sintering of Mn-added $Al_2O_3$ according to the additive concentration. UV-VIS reflectivity(SCI) spectra of Mn-added $Al_2O_3$ consisted of smooth bottoms in 300~550 nm wavelength range and plateaus at wavelengths longer than 650 nm. The reflectivity spectrum continuously moved downward, and the specimen color became darker and thicker with increasing Mn content. The CIELAB color change with respect to standard white was also dependent on the amount of Mn added: ${\Delta}L^*$(D65) negatively increased and ${\Delta}E_{ab}^*$(D65) positively increased with increasing Mn content, probably due to Mn substitution to Al and/or the mixing effect of black $Al_2MnO_4$ as a second phase.

As-Cast and Solidification Structures of Fe-3%C-x%Cr-y%V-w%Mo-z%W Multi- Component White Cast Irons (Fe-3%C-x%Cr-y%V-w%Mo-z%W 다합금계백주철의 주방상태 및 급냉조직)

  • Yu, sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.414-422
    • /
    • 2002
  • Three different multi-component white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their as-cast and solidification structures. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No.1), 3%C-10%V-5% Mo-5%W(alloy No. 2) and 3%C-17%Cr-3% V(alloy No.3). The as-cast microstructures were investigated with optical and scanning electron microscopes. There existed two different types of carbides, $M_7C_3$ carbide with rod-like morphology and $M_6C$ carbide with fishbone-like one, and matrix in the alloy No. 1. The alloy No. 2 consisted of MC carbide with chunky and flaky type and needle-like $M_2C$ carbide, and matrix. The chunky type referred to primary MC carbide and the flaky one to eutectic MC carbide. The morphology of the alloy No. 3 represented a typical hypo-eutectic high chromium white cast iron composed of rod-like $M_7C_3$ carbide which is very sensitive to heat flow direction and matrix. To clarify the solidification sequence, each iron(50g) was remelted at 1723K in an alumina crucible using a silicon carbide resistance furnace under argon atmosphere. The molten iron was cooled at the rate of 10K/min and quenched into water at several temperatures during thermal analysis. The solidification structures of the specimen were found to consist of austenite dendrite(${\gamma}$), $ ({\gamma}+ M_7C_3)$ eutectic and $({\gamma}+ M_6C)$ eutectic in the alloy No. 1, proeutectic MC, austenite dendrite(${\gamma}$), (${\gamma}$+MC) eutectic and $({\gamma}+ M_2C)$ eutectic in the alloy No. 2, and proeutectic $M_7C_3$ and $ ({\gamma}+ M_7C_3)$ eutectic in the alloy No 3. respectively.