• 제목/요약/키워드: Wheel-rail

검색결과 583건 처리시간 0.034초

고속철도용 윤축의 정${\cdot}$동적파괴인성 평가 (Static and Dynamic Fracture Toughness of Wheelset for High Speed Train)

  • 권석진
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

고속주행용 화차 대차의 주행안전성 (Running Safety of High Speed Freight Bogie)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.179-186
    • /
    • 2001
  • As the freight traffic becomes heavier, the high speed of existing freight cars is essential instead of the construction of a new railway. The high speed can be achieved by the design modifications of the freight bogie. In this paper, an analytical model of freight bogie including the lateral force between rail and the flange of wheel is developed to decide the critical speed, which activates a hunting motion and tells the running safety of freight bogie. The dynamic responses of the analytical model were compared with an experimental data from a running test of a freight bogie and showed good agreements between them. The analytical model is used to find the design modifications of the freight bogie by parameter studies. The results show that the reduction of wheelset mass ratio and the increase of the axle distance of the freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this also study shows that smaller wheel conicity deteriorates the running safety of the freight car, which means the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

지하철 곡선부소음의 특성에 관한 연구 (A Study on the Characteristics of Subway Noise in Curved Line)

  • 유원희;고효인;박준혁;조준호;양칠식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.773-778
    • /
    • 2008
  • The subway noise in curved line is affected not only by rail condition but also wheel condition and dynamic characteristics. The railway curving noise can be divided into 2 categories. The first is noise depending on the vehicle speed, and the second is the one independent on vehicle speed. In this study the noises were reviewed by using eigen-mode of wheel and waterfall plot which shows noise level in time-frequency domain. And also those were reviewed in viewpoint of stick-slip noise and wheel flange contact noise.

  • PDF

철도차량장치의 점착력 추정에 의한 Anti-Slip 제어 (Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • 한국철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

광주도시철도 전동차의 곡선추종성 및 주행안전성 평가 (Estimation of Curving Performance and Running Safety of Gwangju Electric Multiple Unit for City Subway)

  • 함영삼;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.745-750
    • /
    • 2004
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 80km/h for estimating the curving performance and running safety of Gwangju EMU. As the test results, could confirm the curving performance and running safety of Gwangju EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF

모드 해석과 충격 가진을 이용한 차륜 진동에 대한 연구 (A study on the wheel vibration using modal analysis and impact test)

  • 이태욱;우관제;김종년;이화수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.734-739
    • /
    • 2003
  • When a train moves on rails, wheel and rail vibrate to produce contact noise and contact force. The former results in airborne noise and the latter transmits through bogie and excites carbody to generate structure borne noise. In this paper, wheel vibration is studied by theoretical and experimental approaches. Theoretical analysis is performed by finite element method and experimental analysis is performed by impact test. Using modal analysis and model tunning, we could have good agreement between the two approaches.

  • PDF

구름접촉피로시험을 통한 고속철도 레일연마량 분석 (Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway)

  • 성덕룡;장기성;박용걸
    • 한국철도학회논문집
    • /
    • 제15권2호
    • /
    • pp.141-146
    • /
    • 2012
  • 차륜과 레일의 반복적인 구름접촉은 레일 표면결함을 유발하고, 레일 표면결함은 충격하중을 유발하여 소음 진동, 레일파단, 궤도파괴로 이어지고 심할 경우 열차사고(탈선)를 발생할 수 있다. 이러한 레일 표면결함을 제어하기 위한 방법으로 레일연마가 시행되고 있다. 본 연구는 KTX차륜과 UIC레일에서 발생하는 최대 접촉압력을 유한요소해석을 통해 산정하였고, 일반레일 및 열처리레일에 대한 구름접촉피로시험을 수행하여 접촉압력 및 반복횟수에 따른 레일표면 경화층 형성 경향을 분석하였으며, 누적통과톤수에 따라 고속철도 레일에서 발생하는 표면 경화층을 제거하여 건전한 레일표면을 유지하기 위해 0.2mm/2천만톤의 적정 레일연마량을 제안하였다.

상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구 (A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules)

  • 엄범규;이세용;오세빈;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험 (A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator)

  • 엄범규;이세용;이영엽;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

공압식 능동형 엔진마운트 시스템의 TPA 출력변수간의 상관관계 분석 (Correlation Analysis of TPA Output Variables in a Pneumatic Active Engine Mount System)

  • 박혈우;이재천;최재용;김정훈
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.46-52
    • /
    • 2012
  • A PAEM(Pneumatic Active Engine Mount) system has been developed to improve NVH performance of a SUV in idle state. Control objective to attenuate the vibration of a vehicle should be determined prior to the design of control algorithm. This study presents the correlation analysis of output variables of PAEM system by means of TPA(Transfer Path Analysis) using experimental data obtained by vehicle test. The analysis results show that the vibration of vertical direction is more serious than those of longitudinal and lateral direction of the vehicle, and that the correlation between the vibration of front seat rail and that of steer wheel is highest. In conclusion, the vibrations of front seat rail and steer wheel in vertical direction should be considered as the control objectives of the PAEM.