• Title/Summary/Keyword: Wheel-Rail interface

Search Result 35, Processing Time 0.033 seconds

Analysis of Occurrence Tendency of Rail Force According to Running the Hanvit 200 Train on Transition Curve Track (한국형 틸팅차량 완화곡선 주행시 궤도작용력 발생경향 분석)

  • Park, Yong-Gul;Choi, Sung-Yong;Kim, Youn-Tae;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.678-686
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured rail force data in transition curve track, and then evaluated probability the range of load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of rail force by occurred a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation. Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation by changed of cant.

Study on the ride quality of vehicle with carbody flexibility (차체의 유연성을 고려한 철도차량의 승차감 해석)

  • Seong, Jae-Ho;Lee, Kang-Wun;Park, Gil-Bae;Yang, Hee-Joo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.272-277
    • /
    • 2007
  • Generally railway vehicle runs on the rail with endless interaction between wheel and rail. Irregularity of rail causes the periodic motion of the vehicle. In association with this motion, the design of vehicle would be carried out in order to avoid the resonance between car-body and bogie. It may be seen that the first vertical bending mode of car-body contributes considerably to the vertical ride comfort level. In this paper to know the effect of the car-body first vertical bending mode on vertical ride comfort, the mode has been considered with dynamic model. I-DEAS program was used to get the car-body first vertical bending mode and VAMPIRE program was used to analyze ride comfort index(Wz) with FE interface file.

  • PDF

Measuring Technique For Acoustic Roughness of Rail Surface With Homogeneous Displacement Sensors (동일 변위센서를 사용한 레일표면 음향조도의 측정방법)

  • Jeong, Wootae;Jang, Seungho;Kho, Hyo-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7941-7948
    • /
    • 2015
  • Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.

A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules (상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구)

  • Eom, Beom-Gyu;Lee, Se-Yong;Oh, Se-Been;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Functional System Analysis of On Board Control Unit for VAL 208 Light Rail Train on Uijeongbu City (의정부경전철 VAL208 차상열차제어장치의 시스템 인터페이스 기능분석)

  • Yang, Doh-Chul;Park, Dong-Hoon;Hwang, Ja-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2718-2725
    • /
    • 2011
  • The VAL 208 in Uijeongbu Light Rail system is a light railway vehicle which could be operated in driverless supported by Siemens. It is a Rubber Wheel Type AGT (Automatic Guideway Transit). It will be operated in two car train about 11km of Uijeongbu line. In this paper, the technical overview of the ATC system and the interface between the system and the way side control equipments are presented. It includes the main functions of OBCU(On Board control Unit) and its information sharing method with WCU(Way side control Unit). The testing procedure of OBCU is also discussed.

  • PDF

A Study on Error of ATC Interface at the Particular Sites of High Speed Railroad (고속철도 특정구간에서의 ATC 인터페이스 오류에 관한 연구)

  • Park, Chul-Kew;Shin, Myoung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1746-1751
    • /
    • 2007
  • The bullet train runs more than 200km/h so that it is invisible to the naked eye. For this reason, KTX solely dependent on the ATC operation system. Above all things, 'stability' and 'regular time' are essential to Train Control Operation system. But intermittently, there is a signal transmission problem between ATC operation facilities and ground equipments. which is caused by wheel sliding and friction coefficient between wheel and rail when the train starts. This paper analyzed train service data for one year for accurate survey. In addition, this thesis examines the main cause of a signal transmission problem through simulation and experiment. Further, the method to solve the conventional problem is presented.

  • PDF

Development of the technology to verify the systems interface for the High speed Electric Multiple Unit (차세대고속철도기술개발사업 시스템인터페이스 시험기술 개발)

  • Kang, B.M.;Jeong, S.G.;Ahn, H.K.;Choi, H.C.;Yu, S.W.
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.810-815
    • /
    • 2010
  • Since a long time ago, many railway engineers analyze and discuss the interface between the sub-system of railway, such as a wheel/rail interface, pantograph/catenary interface etc. The verifying of the system interface could help to achive the optimized performance and safety of the railway system considering that the railway system is constructed by various engineerings, such as civil, mechanical, electrical, etc. A rolling stock with distributed drive system, which will be developed by HEMU-400x project, is capable of running on high speed line and conventional line in Korea. To verify the performance of rolling stock, test run will be done with revenue service line. And the test items of the system interface have to be selected to verify a functional compatibility and physical force between rolling stock and infrastructure. In this paper, the authors will indicates the test items to verify system interface. To achive the conclusion, the authors analyze a specification of the development train and the design value of Seoul-Busan high speed line, which will be used for testing of the development train, and also, study the various case of high speed train commissioning.

  • PDF

Characteristics of Track Behaviors according to Accelerated Tilting Train Speed (틸팅차량 증속에 따른 기존선 궤도의 거동 특성)

  • Shin, Tae-Hyoung;Choi, Jung-Youl;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1653-1661
    • /
    • 2008
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the conventional line(ballast track), which is vulnerable to accelerated train speed. The evaluation of tilting train test running the part of Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the performance of each part of track components while tilting train and high speed train were running the existing line, wheel load, rail bending stress, vertical displacement of rail and sleeper were compared so as to evaluate the expected impact by tilting train for improving the train speed.

  • PDF

A Study on the Test Construction Evaluation and Noise and Vibration Characteristics of Wireless Low-Floored Trams Trackway (무가선 저상트램 노면선로의 시험시공 평가와 소음·진동 특성연구)

  • Jeong, Young Do;An, Dong Geun;Jun, Jin Taek;Jeong, Woo Tae;Lee, Su Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.143-154
    • /
    • 2012
  • The wireless low-floored tram is an innovative transportation system which is environment-friendly and highly energy-efficient. In addition, the system has various advantages such as low construction cost, improvement of urban landscape, revitalization of surrounding commercial area, elevated convenience for passengers, etc. Therefore, more than ten local governments have proposed tram construction projects in Korea. Accordingly, many research and development projects are ongoing funded by government including the developments of tram vehicle, tram trackway, signal system, etc. The embedded rail system are commonly used in order to provide leveled roadway surface in urban area. It is effective to reduce the noise and vibration, caused at the interface between the wheel and track, to minimize the construction period, and to lower the maintenance cost. This paper investigated the design and construction processes for tram trackway and figured out the constructability for the test track with embedded rail system for the first time in Korea. The performance to reduce the noise and vibration were quantitatively measured in the test track with embedded rail system. In addition, the results were compared to the ones for track with conventional rail system.