• Title/Summary/Keyword: Wheel speed

Search Result 920, Processing Time 0.026 seconds

Study on optimal steering control of an unmanned cart (無人 搬送車의 最適 操向制御)

  • 김옥현;정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 1987
  • An optimal control procedure is presented for steering of an unmanned cart which has two motored wheels on its left and right side. Steering, running and stopping are enabled by controlling the motor speed independently. An optimal proportional-plus-integral control is employed to eliminate steady state error which is sustained by a simple proportional control for tracking a circular arc path. A simple and readily-implemented suboptimal control is also examined. The suboptimal control gives comparable performance and therefore provides an effective approach for industrial application of the unmanned cart. Effects of design parameters of unmanned cart such as forward velocity, wheel radius and position of sensor are investigated. It is shown that within the practicable values of the parameters the controlled performance improves rapidly with increase of those parameters then the improvement becomes negligible, which suggests base values over which the parameters should be taken.

A Study on Manufacture and Control of a Self Manufacturing Hybrid Electric Vehicle (자작형 하이브리드카의 제작 및 제어에 관한 연구)

  • Kim, Hack-Sun;Jeong, Chan-Se;Yang, Soon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • In this paper, Hybrid Electric Vehicle is directly designed and manufactured for base study of HEV's system and Green Car. Foundation design consists of power train design and the frame design. The power train concept includes motor, engine, generator and battery. And the concept of the frame is the single-seat of this self-made HEV. A frame installed in hybrid system contains suspension, steering wheel, seat, accelerating pedal, brake pedal, clutch handle and various chassis parts with bearings. Electromagnetic clutch is equipped to transmit engine power to drive axle. The control algorism make using LabVIEW to control of an engine and a motor depending on drive condition. A parallel type hybrid system is manufactured to control operation of a motor and an engine depending on vehicle speed.

Assessment and Reliability Validation of Lane Departure Assistance System Based on DGPS-GIS Using Camera Vision (카메라영상에 의한 DGPS-GIS기반 차선변경 지원시스템의 평가 및 신뢰성 검증)

  • Moon, Sangchan;Lee, Soon-Geul;Kim, Minwoo;Joo, Dani
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.49-58
    • /
    • 2014
  • This paper proposes a new assessment and reliability validation method of Lane Departure Assistance System based on DGPS-GIS by measuring lanes with camera vision. Assessment of lane departure is performed with yaw speed measurement and determination method for false alarm of ISO 17361 and performance validation is executed after generating departure warning boundary line by considering deviation error of LDAS using DGPS. Distance between the wheel and the lane is obtained through line abstraction using Hough transformation of the lane image with camera vision. Evaluation validation is obtained by comparing this value with the distance obtained with LDAS. The experimental result shows that the error of the extracted distance of the LDAS is within 5 cm. Also it proves performance of LDAS based on DGPS-GIS and assures effectiveness of the proposed validation method for system reliability using camera vision.

Development of a Toroidal CVT Controller for Agricultural Tractor (II) - PID controller - (트랙터용 토로이달 무단변속기 제어시스템 개발(II) - PID 콘트롤러 개발 -)

  • Kim H. J.;Ryu K. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.407-418
    • /
    • 2004
  • There are several different types of continuously variable transmission(CVT) such as toroidal drive, belt drive, hydrostatic drive, hydro-mechanical drive. The toroidal CVT is an alternative to the manual transmission, HST, power-shift gear trans-missions or other CVTs. The driver of the CVT tractor doesn't have to operate a shia lever since the CVT controller automatically controls the speed of tractor. Thus, it is much easier to operate the CVT tractor. The fuel efficiency of CVT tractor can be increased since the controller responds quickly to the change in external load on the wheel during field operation. This study was conducted to develop the hardwares and softwares for the toroidal CVT controller which control the variator and the range clutches. The hardware consisted of a measurement system, hydraulic system and computer. And the PID controller was developed using the simulation model of the CVT control system. Through the simulation, the control coefficients for the PID controller were selected. Finally, the performance of the CVT control system was evaluated by step response test and torque response test. The settling time of the CVT control system appeared to be fast enough for field operations.

Performance Improvement of Centralized Dynamic Load-Balancing Method by Using Network Based Parallel Genetic Algorithm (네트워크기반 병렬 유전자 알고리즘을 이용한 중앙집중형 동적부하균등기법의 성능향상)

  • Song, Bong-Gi;Sung, Kil-Young;Woo, Chong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.165-171
    • /
    • 2005
  • In this paper, the centralized dynamic load-balancing was processed effectively by using the network based parallel genetic algorithm. Unlike the existing method using genetic algorithm, the performance of central scheduler was improved by distributing the process for the searching of the optimal task assignment to clients. A roulette wheel selection and an elite preservation strategy were used as selection operation to improve the convergence speed of optimal solution. A chromosome was encoded by using sliding window method. And a cyclic crossover was used as crossover operation. By the result of simulation for the performance estimation of central scheduler according to the change of flexibility of load-balancing method, it was verified that the performance is improved in the proposed method.

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

Kinetic Energy Recovery System for Electric Vehicles (전기자동차용 기계적 에너지 회생장치)

  • Shin, Eung-Soo;Bang, Jae-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.440-445
    • /
    • 2011
  • This paper presents a new regenerative brake system of electric vehicles that employs a continuous variable transmission(CVT) and a flywheel. The developed device has advantages over existing regenerative brakes from a standpoint of reliability and versatility in actual driving conditions. The system consists of a CVT, two wheels, a flywheel, a coupling and auxiliary powertrain components. The CVT is designed as a combination of two cones and a roller, which causes the velocity difference between the wheel and the flywheel. The power flow of the flywheel system is controlled by the CVT roller and the coupling through step motors. A prototype has been developed and then its performance has been investigated for various operating conditions. Results show that the storage efficiency of the flywheel is much affected by the vehicle's velocity and it is reduced below 20% for high speed, as compared to the 25% efficiency for an ideal condition. The CVT is a primary factor for lowering the flywheel efficiencies due to large friction and slipping between the cone and the roller.

Running Bucket Vibration Test of Steam Turbines (증기 터빈 버킷의 회전 진동 시험)

  • 박종포;신언탁;김호종
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.331-335
    • /
    • 1998
  • A design modification was made on the 9-th stage wheel dovetail of a high-intermediate pressure (HIP) turbine rotor for a fossil power plant that necessitates the use of new long-shank buckets for the row. A bucket vibration test is necessary to verify that the new 9-th stage buckets have adequate frequency margin from a nozzle passing frequency when running at speed. A finite element analysis (FEA) has been performed using a commercial S/W to approximately estimate bucket natural frequencies, and thus to help the vibration test. A row of the new buckets has assembled on the HIP rotor for the vibration tests using dynamic balancing facilities. The tests have been done during deceleration run with air excitation. The test results are compared with the calculation using our empirical formula, and show that the modified design meets the frequency-margin requirements.

  • PDF

Development of Shift Map for TMED Type DCT PHEV in Charge Sustaining Mode considering Transmission and Motor Losses (변속기 및 모터 손실을 고려한 TMED Type DCT PHEV의 CS 모드 주행 시 변속맵 개발)

  • Jeon, Sungbae;Bae, Kyunggook;Wi, Junbeom;Namkoong, Choul;Goo, Changgi;Lee, Ji-suk;Hwang, Sung-Ho;Kim, Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.367-373
    • /
    • 2017
  • In this paper, a new shift map was proposed to improve the fuel economy of a transmission mounted electric device(TMED) type dual clutch transmission(DCT) plug-in hybrid electric vehicle(PHEV) by considering transmission and motor losses. To construct the shift map, powertrain efficiencies of the engine-DCT-motor were obtained at each gear step. A shift map that provides the highest powertrain efficiency was constructed for the given wheel torque and vehicle speed. Simulation results showed that the fuel economy of the target PHEV can be improved by the new shift map compared with the existing engine optimal operating line(OOL) shift control.

Experiments on Egress of Persons with Mobile Disability in Train Car (철도차량에서의 지체장애인 피난 실험)

  • Kim, Jong-Hoon;Kim, Woon-Hyung;Roh, Sam-Kew;Lee, Duck-Hee;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.865-872
    • /
    • 2009
  • Korean railroad company is continuously improving the service for the disabled. They also install and reform many facilities for them. However, It is not considered the importance of egress when fire occurred in a cabin Now, Fire hazard analysis and risk assessment are introduced into domestic regulations for improving fire safety performance of train car and railroad facilities. Considering the fact that fire safety evaluation process doesn't fully include disabled person, fundamental egress data for them is very important for life safety aspect. In this paper, Egress experiments and analysis were conducted to measure the movement speed of the disabled with Mugunghwa and Saemaul.