• 제목/요약/키워드: Wheel position

검색결과 249건 처리시간 0.034초

전방향 이동로봇 위치제어 알고리즘과 실험적 검증 (Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot)

  • 주백석;조강익;성영휘
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.

항만 자동화를 위한 야드 크레인의 절대위치 측정 기법 (Method for Measuring Absolute Position of a Yard Crane for Port Automation)

  • 전태원;유우종;이홍희;김흥근;노의철
    • 전력전자학회논문지
    • /
    • 제9권2호
    • /
    • pp.163-170
    • /
    • 2004
  • 1960년도부터 컨테이너를 사용한 해상 물동량이 급격히 증가되어 부두에서 처리하여야할 컨테이너 양이 많이 증가되었다. 부두의 운용효율을 증가시키기 위하여 야드 크레인의 정확히 위치 검출이 상당히 중요한 과제이다. 본 논문에서는 엔코더 출력펄스와 적외선센서를 사용하여 정확하고 신속하게 크레인의 절대위치를 측정하는 기법을 제시하였다. 갠추리 바퀴에 직결된 엔코더 펄스를 카운팅하여 갠추리의 이동거리를 측정한 후, 바퀴의 슬립 통에 인하여 발생하는 측정오차를 보상하기 위하여 적외선센서를 사용하였다. 실제 크레인의 1/10 축소한 시뮬레이터로 실험을 수행하여 본 논문에서 제시한 기법의 타당성을 확인하였다.

슬라이딩 메커니즘을 이용한 서비스 로봇의 밸런싱 자세의 안정화에 대한 실험연구 (An Experimental Study on Balancing Stabilization of a Service Robot by Using Sliding Mechanism)

  • 이승준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.233-239
    • /
    • 2013
  • This paper presents the analysis and control of the position of the COG (Center of Gravity) for a two-wheel balancing robot. The two-wheel balancing robot is required to maintain balance by driving two wheels only. Since the robot is not exactly symmetrical and its dynamics is changing with respect to moving parts, robust balancing control is difficult. Balancing performance becomes difficult when two arms hold a heavy object since the center of gravity is shifted out of the wheel axis. Novel design of a sliding waist mechanism allows the robot to react against the shift of the COG by moving the whole upper body to compensate for the imbalance of the mass as a counter balancer. To relocate the COG position accurately, the COG is analyzed by force data measured from two force sensors. Then the sliding COG mechanism is utilized to control the sliding waist position. Experimental studies are conducted to confirm the proposed design and method.

신침로거리와 전타시점에 관한 연구 (A Study on the New Course Distance and the proper time to alter course)

  • 김민석
    • 수산해양교육연구
    • /
    • 제21권4호
    • /
    • pp.586-591
    • /
    • 2009
  • The marine traffic accidents go on increasing owing to the increment of marine traffic capacity, and the solutions about these matters are vigorously considering by many researchers. When the watch officer navigates to the narrow channel, bend or an area obscured by an intervening obstruction and around the harbour limit he must follow the planned track. The watch officer can safely navigate along the course laid down only when he alters his course in advance before the new course distance earlier than the course alternation point. If we call this point to be changed in advance a turning bearing, the turning bearing is decided according to the direction and the range from the clearing objects. The turning bearing helps the watch officer to determine whether the ship is at wheel-over position or not. The author in this paper suggest how to make and use a curve graph which is decided according to the direction and the distance from the clearing objects. If the watch officer utilize this curve graph he can judge swiftly and precisely whether his ship is at the wheel - over position or not.

Sintering of the Crankshaft Position Sensor Wheel

  • Park, J.K.;Park, H.S.;Park, J.S.;Song, K.W.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.401-402
    • /
    • 2006
  • All-surface, all-tooth machining and roll forming of cast iron have been used to manufacture the crankshaft position sensor wheel (CPSW). However, these methods pose many problems such as difficult processing, high material cost, and low tooth precision. Thus, we developed a sintered CPSW with an improved detection ability in order to resolve the problems related with the previous methods of manufacturing CPSW by simplifying the process flow and improving tooth precision. The sintering process is introduced in this study. We conducted an experiment to compare the sintered and roll formed products and analyzed the results to evaluate the reliability of the sintering process. Furthermore, we compared and analyzed stress and displacement in the sintered and roll formed products through the "Finite Element Method(FEM)". According to the experimental and FEM results, the sintered product showed satisfactory mechanical properties. It was less expensive to process and lighter and showed better quality than the roll formed product. The results of this study could be applied to design an optimum CPSW using the sintering process.

  • PDF

최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계 (Design of a User-Friendly Control System using Least Control Parameters)

  • 허영진;박대길;김진현
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.

항만 자동화를 위한 야드 크레인의 절대위치 측정 기법 (Method for Measuring Absolute Position of a Yard Crane for Port Automation)

  • 전태원;김경만;이홍희;김흥근;노의철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.439-445
    • /
    • 2003
  • Since 1960s. container shipping volume has increased dramatically and continuous on a trend of rapid growth, and so the number of containers handled at the port increases. In order to improve yard crane operating efficiency, the precise position measurement of the yard crane is important. This paper describes the method to measure the absolute position of yard crane using the output pulse of an encoder and infrared sensors. The crane position is calculated by counting the output pulse of an incremental encoder, which is mounted on the wheel in the crane. By the way, the wheel slippage on rail may cause some errors in crane position information obtained from encoder pulses, and the errors in the crane position information are compensated with infrared sensors. The performance of proposed method is verified on experimental results with the simulator of yard crane, the size of which is about 1/10 with the real crane.

  • PDF

CAE를 이용한 휠 내구성능 동역학 해석을 위한 연구 (The Study on Dynamic Analysis of Durability of a Wheel using CAE)

  • 박재흥;박태원;정성필
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1296-1303
    • /
    • 2012
  • There is a certain limit to reproduce phenomena between the real vehicle and road, since the existing methods to verify durability of the wheel are mostly uni-axial tests. And the change of durability of the wheel can't be predicted since these tests don't consider the camber angle and lateral force as important factors. In this paper, the FE models of the wheel-tire and drum are created. Then, the vertical and lateral loads are applied to wheel-tire assembly and the camber angle is applied by inclining the wheel-tire assembly to the drum. Based on the analysis result, the crack position is predicted to be created in the body of the wheel. The variation of the stress according to the camber angle is verified and the maximum spot of the stress changes continually.

CBN 연삭숫돌의 초음파 인프로세스 드레싱 기법 (A Study on the Ultrasonic In-Process Dressing Method of CBN Grinding Wheel)

  • 이석우;정해도;최헌종
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.43-50
    • /
    • 2000
  • A CBN wheel was used for the highly efficient and precision grinding of the mold material(STD11). The grinding form accuracy by a CBN wheel is very excellent due to its low wheel wear, but grinding fragments resemble fine powders rather chips. A fine powders by this fragmentation can easily get attached to the wheel surface and therefore causing a loading. In order to prevent this fragmentation phenomena, the alumina stick is use to processing. Because the dressing with alumina stick should be interrupted for a processing, the automation of the processing and high productivity was very difficult. The investigation on the effect of Ultrasonic In-Process Dressing(ULID) on the grinding characteristics focuses in this Paper. This ULID method is that ultrasonic vibration in my Position of wheel is used to remove impurities on the wheel surface. Finally, the rate of surface roughness change in grinding by the ULID method was less than grinding without ultrasonic vibration. Loading phenomena by the ULID method were more prevented than grinding without ultrasonic vibration.

  • PDF

1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석 (Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element)

  • 최하영;이동형;권석진;서정원
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.