• 제목/요약/키워드: Wheel motor drive system

검색결과 64건 처리시간 0.023초

차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발 (Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability)

  • 양동호;박진현;황성호
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

FEM을 이용한 자기부상 열차용 선형 유도전동기의 특성 해석 (Characteristic Analysis of LIM for Magnetic Levitation Vehicle by F.E.M.)

  • 김정철;이상우;윤종학;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2003
  • The recent operating trains including the high speed train are mostly moving system on the rail and system use the mechanical propulsion force to drive the gear and wheel by the traction motor. Advanced countries are interested in Magnetic Levitation Vehicle and they have been studying about it continuously. Thus this paper is analyzed the feature of analysis the feature for Linear Induction Motor as the propulsion equipment of Magnetic Levitation Vehicle. And the Magnetic Levitation Vehicle is being developed for the transportation system of next generation using the Finite Element Method

  • PDF

독립 구동 굴절차량의 회전반경 감소를 위한 토크분배 알고리즘 (Torque Distribution Algorithm of Independent Drive Articulated Vehicle for Small Radius Turning Performance)

  • 이기범;황가람;탁준영;서인수
    • 한국철도학회논문집
    • /
    • 제17권5호
    • /
    • pp.336-341
    • /
    • 2014
  • 기차나 군용 트럭 등에 이용되던 굴절차량이 승객의 대량 수송을 위하여 일반 도로에 적용이 검토되고 있다. 레일을 따라가지 않고 일반 도로에서 주행하는 굴절차량은 회전반경, 차량 선회 폭, 이탈궤적, 스윙아웃등 다양한 제어 요소를 갖는다. 현재 승객 수송을 목적으로 제작되는 굴절차량은 각 바퀴에 하나의 모터를 장착하고 구동하는 독립 구동 방식을 채택하고 있으며, 각 바퀴의 독립 제어를 통하여 차량의 빠르고 정확한 자세제어가 가능하다. 이 논문에서는 여러 제어 요소 중 굴절차량의 최초 목적인 회전반경 감소를 위한 토크 분배 알고리즘을 제안하고, 시뮬레이션을 통하여 회전 반경이 감소함을 검증하였다.

승용차 ABS의 하이드로릭 유닛, 센서, 컴퓨터에 관련된 트라이볼로지적인 고장사례 고찰 (Tribological Failure Examples Involving Hydraulic Unit, Sensor, Computer of Anti-lock Brake System in Passenger Cars)

  • 이일권;한재오;이정호;이영숙;김추하
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.183-188
    • /
    • 2014
  • In this paper, we present our analysis of tribological failure examples for an anti-lock brake system(ABS) in a car. The study range of this paper is to improve the quality of ABS system by analyzing with sensor, computer, actuator and oil lines. In the first example, the brake leak from hydraulic supply line in a caliper on the rear left side of the ABS hydraulic modulator. This produces the sponge phenomenon, where the car does not brake even when the driver operates the brake pedal. The hydraulic unit operating ABS is actuator that play role regulating drive condition according with the oil pressure supplied with wheel of a car. In the second example, the service man does not completely tighten the fixed bolt after repairing the car. This causes the ABS warning lamp to light up as the ABS wheel speed sensor cannot detect whether the ABS has been activated. In the third example, the ABS electronic control unit is separated from the soldered part of the inner circuit board. Consequently, the ABS fails in control because the ABS motor pump receives no-signal for the hydraulic unit. The wheel speed sensor has to large durability because of giving signal of acting condition to computer by detected the acceleration and deceleration of wheel of a car. In the fourth example, the ABS warning lamp lights up of when cracks propagate in the circuit board soldering part. The circuit of this computer is very important part for input and output the operating signal of system. Such failures can aggravate the durability of the ABS. Thus, the ABS needs to be optimized to eliminate malfunction phenomenon.

4륜 직접구동 전기자동차의 제어에 관한 연구 (A Study on the Control of 4WD EV)

  • 정유석;전범진;설승기;정진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.172-174
    • /
    • 1994
  • Due to the environmental considerations and the energy crisis, there has been a revival of electric vehicles since 1960s. Research and development work concerning with electric vehicles (EVs) was becoming more intense in last decade. As compared with conventional internal combustion engine (ICE) cars, EVs have the advantages of clean, quiet, better energy efficiency, less maintenance and improving the load factor of electric power systems. However, EVs usually have a snort running range, bad acceleration performance and high initial cost. The main reason for these shortcomings is the low figure of energy density and the high per energy cost of battery at present technology state. So it is very important to optimize the overall drive system design with respect to the maximum utilization of battery, energy, motor torque and inverter power. This paper describes a demonstration model of electric car which is driven by 4-wheel direct method using the vector control.

  • PDF

차량 탑재용 전동휠체어(INMEL-5)의 설계(1) (The Design of a "Motorized Wheelchair(INMEL-5)" for Loading in the Car)

  • 정동명;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권1호
    • /
    • pp.105-112
    • /
    • 1990
  • The main concepts in the design and construction of an motorized wheelchair for loading in the tar which is intended to drive a disabled to long distance. The wheelchair is basically a powered and folding, so it is designed to motorized manual wheel- chair by modularity method. The wheelchair hrs been installed with a power motor module, battery module, and drive & control module. The goal of this project is to develop a wheelchair that has multifunction and operated disabled who has variety impairment. So we ave currently working. Experimental results of the system approach our purpose, which is improved maneuverability, safety and can be loaded.

  • PDF

운전 중 IVIS 조작 상황에서 Motor Cue와 과제의 난이도가 과제 전환과 운전 주행에 미치는 영향 (Effect of Motor Cues and Secondary Task Complexity on Driving Performance and Task Switching While Driving)

  • 유은현;한광희
    • 감성과학
    • /
    • 제21권2호
    • /
    • pp.29-42
    • /
    • 2018
  • 최근 자동차와 IT기술의 융합으로 차량 내 인포테인먼트 시스템이 운전자에게 편의 및 오락 기능을 제공하며 역할이 중요해지고 있다. 하지만 운전과 인포테인먼트 시스템을 조작하는 것은 동시에 시각 리소스를 요구하는 과제로 과제를 전환하며 수행해야 한다. 따라서 본 연구는 운전 중 인포테인먼트 시스템 조작 상황에서 조작 과제의 난이도와 motor cue가 과제 전환과 운전 주행능력에 미치는 영향과 함께, motor cue의 효과가 조작 과제의 난이도 수준에 따라 차이가 있는지 보고자 하였다. motor cue와 조작 과제 난이도의 효과를 살펴보기 위해 반복되는 숫자가 청크 단위와 일치하는지에 따라 두 종류의 번호를 사용하였으며, 터치 키의 크기로 난이도 수준을 조절했다. 실험에서 참가자들은 모의 주행을 하며 스크린에 번호를 입력하도록 지시받았고, 과제 수행 중 번호 입력시간, 차선 유지능력, 숫자 키 입력 시간 간격과 핸들 움직임을 측정했다. 그 결과, 난이도 수준에 따라 운전 주행 능력과[F(1, 26) = 8.521, p < .001], 번호 입력 시간의 차이가 유의미했고[F(1, 26) = 35.372, p < .0001], 번호 종류에 따른 차이는 나타나지 않았다. 하지만 Incongruent 번호 입력 시, 청크로 구분된 두 숫자를 입력하는 시간의 간격과 핸들 움직임이 크게 증가하였다. 이는 반복된 숫자가 청크로 구분되어도 청크를 무시하고 한 번에 입력하였음을 나타낸다. 종합하면, 다중 과제 상황에서 청크 단위는 motor cue에 의해 상쇄되며 과제 전환 시점을 결정하는 데에 motor cue의 효과가 있음을 시사한다.

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using Flux-weakening

  • Rohan, Ali;Asghar, Furqan;Kim, Sung Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.451-459
    • /
    • 2018
  • This work presents an approach for modeling of electric vehicle considering the vehicle dynamics, drive train, rotational wheel and load dynamics. The system is composed of IPMSM (Interior Permanent Magnet Synchronous Motor) coupled with the wheels through a drive train. Generally, IPMSM is controlled by ordinary PID controllers. Performance of the ordinary PID controller is not satisfactory owing to the difficulties of optimal gain selections. To overcome this problem, a new type of fuzzy logic gain tuner for PID controllers of IPMSM is required. Therefore, in this paper fuzzy logic based gain tuning method for PID controller is proposed and compared with some previous control techniques for the better performance of electric vehicle with an optimal balance of acceleration, speed, travelling range, improved controller quality and response. The model was developed in MATLAB/Simulink, simulations were carried out and results were observed. The simulation results have proved that the proposed control system works well to remove the transient oscillations and assure better system response in all conditions.