• Title/Summary/Keyword: Wheel load

Search Result 527, Processing Time 0.025 seconds

A Study on the Improvement of the Load Pressure Feedback Mechanism of the Proportional Pressure Control Valve (비례압력제어밸브의 부하압력 피드백방법 개선에 관한 연구)

  • Oh, In-Ho;Jang, Ji-Seongng;Lee, Ill-Yeong;Chung, Dai-Jong;Cho, Sung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.719-726
    • /
    • 1997
  • The proportional pressure control valve having versatile functions and higher performance is an essential conponent in the open loop controlled rear wheel steering gear of the four wheel steering system in a passenger car. In this study, the authors suggest a new type of load pressure feedback mechanism which can make it easy to change the range of controlled pressure without changing the capacity of solenoid. The concept of suggested mechanism, composed of the pressure chamber with throttles in series, was described. The mathematical model was derived from the rear wheel steering gear consisting of a valve and a cylinder for the purpose of analyzing the valve characteristics. And the programme for computing the characteristic of the valve was developed. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed programme. The results from computations fairly coincide with those from experiments. And the results from experiments and computations show that the performance of new valve was as good as that of the already developed one and the new valve has advantages such as the easiness of changing the range of controlled pressure and the decrease of power loss at neutral position without the decline of performance.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Analysis of Economical Validity for Implementation of Telematics in Construction Fields (Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석)

  • Lee Sung Hyun;Lee Dong Wook;Koo Ja Kyung;Lee Tai Sik
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

Investigation on Watertight Properties of the Latex Concrete for Protection Layers of the Slab on Vibrating Strucutres (진동구조물 슬래브 보호층으로서 라텍스 콘크리트의 수밀특성 분석)

  • Lee, Sun-Gyu;Lee, Jung-Hoon;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.247-252
    • /
    • 2009
  • The LMC method of construction which have application to the road bridge is being considered the least relative importance about the watertight performance, because it focused on the durability of concrete. However, The LMC which is being expanded scope of application to the method of construction has grown importance about the watertight performance on the usability and maintenance side as well as durability. In this study, The latex concrete of two types which are different from mingled-ratio of the latex made a comparison to the compressive strength, watertight performance, dynamic wheel load resistance performance and confirmed what it has resistibility about chemical action through the chemical resistance test. The initial strength and watertight performance showed that were tendency the downward at 14 days. However, The long-term strength after 28 days showed that it has firm performance. In consequence, The initial curing of latex concrete is required to scrupulous care and attention at the site application. As a chemical resistance test result, The specimen that is steeped in sulphuric acid solution of 2% discovered the delamination phenomenon. However, it was confirmed that delamination phenomenon don't have an effect on the compressive strength. Moreover, As a dynamic wheel load resistance test result, The latex concrete was concluded to confirming the durability and running stability, because it had hardly any thickness reduction of latex concrete surface about dynamic wheel load and rarely found crack and delamination.

  • PDF

An Experimental Study on Causes Evaluation of Rail Corrugation for Concrete track(STEDEF) in Urban Transit (도시철도 콘크리트궤도(STEDEF)의 레일파상마모 발생원인 분석을 위한 실험적 연구)

  • Choi, Jung-Youl;Gong, Hyung-Sik;Kim, Jun-Hyung;Kim, Hak-Seon;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.413-418
    • /
    • 2018
  • The purpose of this study is to investigate the cause of rail corrugation and the track force for concrete track (STEDEF) in the urban transit. From the field measurements, the dynamic wheel load, vertical displacement of sleeper and rail bending stress were measured and it was evaluated by regarding to the rail corrugation. As a result of the study, the causes of rail corrugation was experimentally proved by frequency analysis using measured dynamic wheel load data. The influence of corrugation on dynamic wheel load, rail bending stress and sleeper displacement was evaluated that the periodic irregularities of rail corrugation on the rail surface amplified the dynamic track force such as the dynamic wheel load, and thus the rail bending stress and the vertical displacement of sleeper could be increased by a maximum of 1.7 times.

Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering (전륜 조향용 전기식 작동기 피로수명 평가)

  • Young-Cheol Kim;Hyun-gi Kim;Dong-Hyeop Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2023
  • Recently, the consideration of eco-friendly technology to reduce greenhouse gas is being emphasized in the aviation field. Various studies for applying electro-mechanical actuators that control mechanical linear and rotational movements using electricity as the primary power source are in progress. In this study, the fatigue analysis of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was carried out. A unit load stress table was constructed for the vulnerable part selected through structural analysis, and the representative stress for each load profile was calculated using the unit load stress table constructed for the vulnerable part. Then, individual profiles of representative stress group were extracted from continuous load profiles by applying the rainflow counting method. The damage of each profile was calculated by applying the S-N diagram. Finally, the total damage in the vulnerable parts was calculated by the linear cumulative damage law, and the fatigue life of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was evaluated.

Roadbed Behavior in Managanese Crossing of Turnout System (분기기 망간 크로싱부 노반거동)

  • Jeon, Sang-Soo;Eum, Ki-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.45-57
    • /
    • 2008
  • The improved turnout system is developed to speed-up the pre-existing railroad. The research has been actively carried out far the improved turnout system and the impact factor is estimated using the data sets achieved from the dynamic wheel-load field tests in both the conventional and the improved turnout system. In this study, the track performance and roadbed behavior are examined for the conventional and improved turnout system using the estimated impact factor. Dynamic wheel load and rail pressure are evaluated to assess the track performance. Roadbed stress and settlements are estimated using numerical analysis. Additionally, the stability of roadbed is estimated in soft roadbed condition influenced by the weather effects and cyclic train loading. The results show that dynamic wheel load, rail pressure, roadbed stress, and roadbed settlements in the improved turnout system substantially decrease compared with those in the conventional turnout system.

THE DESIGN ON A WHEEL BALANCER BY THE LOAD HANDLING GUIDELINES (하중을 고려한 인간 공학적 휠 밸런스 설계)

  • 양성모
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.50-54
    • /
    • 1999
  • In the process of designing a wheel balancer an ergonomic evaluation model has shown that manual tire handling onthe machine was often the major problem, The root of the problem lay in the design of machine's shaft which is influenced by the opeative handling task. Several methods were reviewed for determining the correct shaft' sizes but the Revised NIOSH Equation and the Lifting Stress Calculator were found to be the only suitable models for this study. An application of these mathematical models has shoed that the shaft length and the shaft height were the most critical measurement By analyzing these conclusion s the correct shaft size parameters became clearly defined.

  • PDF

The Process Planning of Disc Spinning for a Large Wheel of Automobile (자동차용 대형 휠 디스크의 스피이닝 설계)

  • 이항수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.28-42
    • /
    • 1998
  • Spinning is one of the incremental forming process by the rotating mandrel and forming roller, and has been applied to manufacturing the wheel disc of automobile to simplify the manufacturing process and to improve the mechanical properties of product. In the proesent study the process variables have been extracted and considered to decide the specification of the spinning machine. The maximum values of working load and power have been evaluated and the blank size has been disigned. The shape and dimensionof forming roller have been designed and the process condition such a s rotational velocity of mandrel and the feedrate of roller have been decided.

  • PDF

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF