• Title/Summary/Keyword: Wetting property

Search Result 85, Processing Time 0.029 seconds

Characteristics of Sn-1.7Bi-0.7Cu-0.6In Lead-free Solder (Sn-1.7Bi-0.7Cu-0.6In 솔더의 특성 연구)

  • Park, Ji-Ho;Lee, Hee-Yul;Jhun, Ji-Heon;Cheon, Chu-Seon;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2008
  • Characteristics of Sn-1.7%Bi-0.7%Cu-0.6%In (hereafter, SBIC) lead-free solder was investigated in this study. The results from SBIC were compared to other lead-free solders such as Sn-3.5%Ag-0.7%Cu (hereafter, SAC), Sn-0.7%Cu (hereafter, SC), and lead-bearing Sn-37%Pb (hereafter, SP) alloy. Tensile properties of bulk solder, wettability, spreading index, bridge and dross were evaluated. As experimental results, tensile strength and elongation of SBIC was 62.5MPa and 21.5%, respectively. The tensile strength was comparable to that of SP solder. The wetting time of SBIC was 1.2 sec at $250^{\circ}C$, and its wetting properties including wetting force were as good as the SAC alloy. However, wettability of the SC was not so good as the SBIC and SAC. The spreading index of SBIC at $250^{\circ}C$ was 71 %, and it was similar level to those of SAC and SC solders. Bridging was not found for all solders of SBIC, SAC and SC in the range from 240 to $260^{\circ}C$. In dross test at $250^{\circ}C$ for an hour, the amount of dross produced from SBIC was about 57% compared to that from SAC.

Tracking Resistance and UV Degradation Property of Polymeric Insulating Materials by Cross-Link Time (가교시간에 따른 고분자 재료의 트래킹성과 자외선 열화특성)

  • 천종욱;이운용;조한구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.447-450
    • /
    • 2002
  • Recently polymeric insulators and arresters are being used for outdoor high voltage applications. Polymeric insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. Polymeric insulator kind are a relatively new technology, but their expected life is still unknown. In this paper, the material property for polymeric insulating material such as silicone rubber and EPBM is investigated by cross-link time and the relation between tracking resistance and W resistance is analyzed by IEC 60587 and W aging experiment.

  • PDF

The Effect of Dimensions of Micro-post on Oleophobic Property (마이크로 기둥 구조의 크기가 소유성 특성 발현에 미치는 영향)

  • Kim, Nam-Kyung;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.91-96
    • /
    • 2018
  • The oleophobic property of surfaces modified with micro-post structures are investigated for a range of micro-post diameter ($11-23{\mu}m$) and pitch ($20-40{\mu}m$). The contact angle of an oil droplet on surfaces with various micro-post dimensions was calculated using the Cassie-Baxter model and did not show a good agreement with the measured contact angle. From measurement, the micro-post with diameter of $23{\mu}m$ and pitch of $32{\mu}m$ was found to have the highest contact angle ($134.3^{\circ}$).

An Experimental Study on Improvement of Fire Extinguishing Performance of Basic Sprinkler System (간이스프링클러 설비의 소화성능 향상에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.46-51
    • /
    • 2018
  • A basic sprinkler system is a fire extinguishing system that can be easily installed in a fire-vulnerable place such as a publicly used establishments. However, the publicly used establishments are not only complicated in structure, but also have a large amount of flammable interior materials, and the users are not normally in a normal state, which is a very dangerous fire-fighting object. Therefore, due to the low fire extinguishing performance of the basic sprinkler system installed in the publicly used establishments, the fire suppression control can not be performed quickly in case of fire, which may increase the life and property damage. In this study, the cases of quantitative changes of extinguishing water used in basic sprinkler system and the cases of addition of additives such as wetting agents, reinforced agents to improve extinguishing performance were compared. Experimental results showed that the extinguishing performance was improved as the quantity of extinguishing water increase and the reinforced agents showed similar performance to that of 60% increase in the amount of extinguishing water. The cooling time to $200^{\circ}C$ and oxygen concentration were improved up to 14.3% and 34.5%, respectively. In the case of using the wetting agent, the cooling time to $200^{\circ}C$ and oxygen concentration did not show any significant improvement, but showed the effect of preventing deep seated fire. In order to prevent loss of life and property, it is necessary to improve the performance of the basic sprinkler system by increasing amount of extinguishing water or using additives like reinforced agents.

Studies on the Absorption Behavior of Dye and Pigment Ink for Ink-Jet Printing (잉크제트용 염료잉크와 안료잉크의 흡수거동에 관한 연구)

  • Lee, Hee-Myung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.47-56
    • /
    • 2005
  • In technology of ink-jet coating, Image quality from correlation between paper and ink depends on the properties of printer and ink as well as those of paper material. Generally, According to the quality of ink that consists of colorants from 5 to 20 percent, It seems that absorption behavior of each ink is different. In this study, we studied to estimate the effects of dye and pigment ink on the absorption and printing properties using 2-type papers on the market and 3-type silica-based coated papers whose pore structure is different. Using the theory of contact angle to evaluate the absorption property, it was possible to measure the baseline length between paper and ink, volume of droplet as well as contact angle. Also, It was possible to calculate wetting energy(mN/m) and spreading coefficient(mN/m) using the surface tension of each ink. These measurements were available to estimate ink-jet qualities.

Synthesis of Fluorinated Polymer Gate Dielectric with Improved Wetting Property and Its Application to Organic Field-Effect Transistors

  • Kim, Jae-Wook;Jung, Hee-Tae;Ha, Sun-Young;Yi, Mi-Hye;Park, Jae-Eun;Kim, Hyo-Joong;Choi, Young-Ill;Pyo, Seung-Moon
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.646-650
    • /
    • 2009
  • We report the fabrication of pentacene organic field-effect transistors (OFETs) using a fluorinated styrene-alt-maleic anhydride copolymer gate dielectric, which was prepared from styrene derivatives with a fluorinated side chain [$-CH_2-O-(CH_2)_2-(CF_2)_5CF_3$] and maleic anhydride through a solution polymerization technique. The fluorinated side chain was used to impart hydrophobicity to the surface of the gate dielectric and maleic anhydride was employed to improve its wetting properties. A field-effect mobility of 0.12 cm$^2$/Vs was obtained from the as-prepared top-contact pentacene FETs. Since various functional groups can be introduced into the copolymer due to the nature of maleic anhydride, its physical properties can be manipulated easily. Using this type of copolymer, the performance of organic FETs can be enhanced through optimization of the interfacial properties between the gate dielectric and organic semiconductor.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • Lee, Jun-Yeong;Han, Jae-Hyeon;Lee, Ji-Hye;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Interpretation of the Five Viscera's Ascending Kidney-Water and Descending Heart-Yang

  • Bang, Jung-Kyun
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • According to the principle of ascending water and descending fire, water has the property of wetting downward, which is the opposite of fire, which has the property of blazing upward. Thus, they work differently according to their innate properties. Nature and the human body maintain harmony through the interaction of ascending water and descending fire. When applied to the human body, the heart and kidney are the center of this principle. In other words, the heart above is the fire and the kidney downward is water. When the heart-fire harmonizes downward, the kidney becomes warm, enabling genuine vital functions to be active. When the kidney yin moves upward, the heart receives the nourishing yin to harmonize nutrients and blood. Thereby, physiological functions become normal throughout the blood meridians. However, in the ascending kidneywater and descending heart-yang of the heart and the kidney, the liver and lung are the major functional organs. In other words, the liver through the dispersing and raising yang functions moves water, which is the vital essence of the kidney, upward. And the lung, through the astriction?clearing of the lung and descending Qi?dispersing functions, moves the heart-fire downward. These functions are deeply related with changing seasons; thus, these functions can be explained with the ascending kidney-water and descending heart-yang of the five viscera.

  • PDF