• Title/Summary/Keyword: Wettability

Search Result 741, Processing Time 0.025 seconds

Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control (태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구)

  • Choi, Jinwook;Seo, Yongwon;Mo, Hyeong-Uk;Kim, Seolha
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.255-259
    • /
    • 2022
  • Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.

Effect of Hydrophobic Condition and Water Content on the Spectral Information of Soil Particle Surface (흙 입자 표면의 소수성 조건과 함수비가 분광정보에 미치는 영향)

  • Jeong-Jun, Park;Seung-Kyong, You;Kwang-Wu, Lee;Jung-Mann, Yun;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.93-100
    • /
    • 2022
  • This study describes the evaluation results on the effect of soil particle surfaces coated with various hydrophobic conditions on spectral information according to water content. Wettability test and spectral information evaluation test were performed on the hydrophobic coated standard sand. When the standard sand was coated with 1%, 3%, and 5% hydrophobic, the contact angles of sand-water interface were 130°~143°, 129°~144°, and 131°~144°, respectively. This means that the contact angle increased as the degree of hydrophobic coating increased at the same drying time, but the range of the contact angle had the same wettability. This means that the contact angle increases as the hydrophobic coating degree increases at the same drying time, whereas the contact angle range has the same wettability. As a result of spectral information evaluation, the maximum spectral reflectance of the dried sand with hydrophobic condition decreased compared to that of the hydrophilic sand, as the degree of hydrophobic increased. However, the maximum spectral reflectance was increased by increasing the degree of hydrophobic under the same water content conditions.

The Variation of the Slip Resistance with Wear of Floor (바닥재 마모에 따른 미끄럼 저항 변화)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.14-20
    • /
    • 2013
  • All most of floors can become less slip resistant with wear. The deterioration of slip resistance can often occur rapidly. So relatively new products can become hazardous within a short period of time. The main objective of this study was the comparison of slip resistance variations caused by traffic wear and accelerative wear. The second objective was to ascertain the effect of wear, and to find out the causes of slip resistance change. Although statistical differences were observed between results of traffic wear and accelerative wear, the trend of the variations of slip resistance caused by traffic wear and accelerative wear was very similar. The measured slip resistance of tested floor changed up to 29%(and 26.5%) after 100,000 steps(and 750 cycles). As the traffic wear and accelerative wear were progressed, the surface roughness of the tested floor became smoother, and so the floor became more slippery under the wet condition. The abraded(worn out) floor surface tended to become hydrophilic surface, while the new floor surface tended to show hydrophobic nature. This phenomenon would change the wettability of floor surface, and the wettability would affect the variation of slip resistance.

The Fluxless Wetting Properties of TSM-coated Glass Substrate to the Pb-free Solders (TSM(Top Surface Metallurgy)이 증착된 유리기판의 Pb-free 솔더에 대한 무플럭스 젖음 특성)

  • 홍순민;박재용;박창배;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.47-53
    • /
    • 2000
  • The fluxless wetting properties of TSM-coated glass substrate were evaluated by the wetting balance method. We could estimate the wettability of the TSM with new parameters obtained from the wetting balance test for one side-coated specimen. It was more effective in wetting to use Cu as a wetting layer and Au as a protection layer than to use Au itself as a wetting layer. The SnSb solder showed better wettability than SnAg, SnBi, and SnIn solders. The contact angle of the one side-coated glass substrate to the Pb-free solders could be calculated from the farce balance equation by measuring the static force and the tilt angle.

  • PDF

The Effect of the Wettability of Solid Surface on Printing Pattern in Screen Printing (스크린 인쇄 공정에서 고체면의 젖음성이 인쇄형상에 미치는 영향)

  • Park, Jungkwon;Kim, Chongyoup
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.397-400
    • /
    • 2010
  • The interfacial hydrodynamic issues in the screen printing are experimentally investigated by using model inks that are prepared by dispersing alumina nanoparticles in water. The printing patterns of the inks that are passed through differing geometrical shapes of screen on solid surfaces with differing wettability are not solely determined by the pattern on the screen. The dynamic contact angle cannot solely explain the physics of the problem, either. The difference between the screen and printing patterns was not the same for concave and convex corners. Especially the elasticity of ink affects the edge shape.

Surface wettability and contact angle analysis by dissipative particle dynamics

  • Lin, Tzung-Han;Shih, Wen-Pin;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • A dissipative particle dynamics (DPD) simulation was presented to analyze surface wettability and contact angles of a droplet on a solid platform. The many-body DPD, capable of modeling vapor-liquid coexistence, was used to resolve the vapor-liquid interface of a droplet. We found a constant density inside a droplet with a transition along the droplet boundary where the density decreased rapidly. The contact angle of a droplet was extracted from the isosurfaces of the density generated by the marching cube and a spline interpolation of 2D cutting planes of the isosurfaces. A wide range of contact angles from $55^{\circ}$ to $165^{\circ}$ predicted by the normalized parameter ($|A_{SL}|/B_{SL}$) were reported. Droplet with the parameters $|A_{SL}|>5.84B{_{SL}}^{0.297}$ was found to be hydrophilic. If $|A_{SL}|$ was much smaller than $5.84B{_{SL}}^{0.297}$, the droplet was found to be superhydrophobic.

Analysis on Wetting Behavior of A Lamellar Type Wet Channels in An Evaporative Heat Exchanger (층상구조를 가진 증발식 열교환기 습채널의 표면 젖음도 해석)

  • Oh, Dong-Wook;Park, Jae Bum;Song, Chan Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.283-287
    • /
    • 2016
  • One of the most important factors for determining the thermal performance of an evaporative cooling system is the wettability of the evaporative heat exchanger surface. Evaporation of a widely spread water film on the heat exchanger surface promotes heat transfer between the "dry" air and "wet" air passages. Hydrophilic coating is generally applied on the heat exchanger surfaces to increase the wettability of the heat exchanger surface and the COP of the evaporative cooling system. In this paper, a simple lamellar patterned structure is suggested to maximize the spreading of a water film on the vertically oriented walls. The capillary height of the lamellar structured grooves is analyzed through a theoretical model, and the results are compared with the numerical analysis through a finite element analysis tool, SE-FIT. A good agreement between the theoretical model and the numerical analysis can be observed as long as the channel depth is comparable to or larger than the channel width of the lamellar structure.

Effects of Surface Roughness and Interface Wettability in a Nanochannel (나노 채널에서의 표면 거칠기와 경계 습윤의 효과)

  • Choo, Yun-Sik;Seo, In-Soo;Lee, Sang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Generation of uniform Fine Droplets Under Spindle Mode in Electrohydrodynamic Atomization (스핀들 모드하의 전기수력학적 미립화를 통한 균일 미세액적 생성)

  • Lee, Sang-Yong;Kim, Myeong-Chan;Kim, Sang-Su;Kim, Yu-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.923-932
    • /
    • 2001
  • A series of experiments were conducted to generate fine liquid(water) drops through the electrohydrodynamic atomization process. The atomization mode depended on flow rate and DC voltage input. For water, having electric conductivity larger than 10(sup)-7S/m, the spindle mode turned out to be the only mode to generate uniform-size drops within the range of 30-450 microns that have wide applications. Within this mode, both the uniformity and the fineness of drops were improved at an optimum voltage input for a given flow rate. This optimum voltage increased with increasing of the liquid flow rate. Another important parameter considered was the nozzle material with different electric conductivity and liquid wettability. A stainless-steel nozzle (the material with high electric conductivity and high liquid wettability) and a silica nozzle (the electrically non-conducting material with low liquid wettability) were tested and compared; and more uniform drops could be obtained with the silica nozzle.