• Title/Summary/Keyword: Wet-Etching

Search Result 469, Processing Time 0.027 seconds

A Study on the Ohmic Contacts and Etching Processes for the Fabrication of GaSb-based p-channel HEMT on Si Substrate (Si 기판 GaSb 기반 p-채널 HEMT 제작을 위한 오믹 접촉 및 식각 공정에 관한 연구)

  • Yoon, Dae-Keun;Yun, Jong-Won;Ko, Kwang-Man;Oh, Jae-Eung;Rieh, Jae-Sung
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.23-27
    • /
    • 2009
  • Ohmic contact formation and etching processes for the fabrication of MBE (molecular beam epitaxy) grown GaSb-based p-channel HEMT devices on Si substrate have been studied. Firstly, mesa etching process was established for device isolation, based on both HF-based wet etching and ICP-based dry etching. Ohmic contact process for the source and drain formation was also studied based on Ge/Au/Ni/Au metal stack, which resulted in a contact resistance as low as $0.683\;{\Omega}mm$ with RTA at $320^{\circ}C$ for 60s. Finally, for gate formation of HEMT device, gate recess process was studied based on AZ300 developer and citric acid-based wet etching, in which the latter turned out to have high etching selectivity between GaSb and AlGaSb layers that were used as the cap and the barrier of the device, respectively.

  • PDF

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.

Surface morphology variation during wet etching of GaN epilayer grown by HVPE (HVPE법으로 성장시킨 GaN 단결정의 wet etching에 의한 표면 변화)

  • Oh, Dong Keun;Choi, Bong Geun;Bang, Sin-Yeong;Kang, Suk Hyun;Kim, So Yeon;Kim, Sae Am;Lee, Seong Kuk;Chung, Jin Hyun;Kim, Kyoung Hun;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.261-264
    • /
    • 2012
  • In this paper, we investigated characteristics of etching induced surface morphology variation by wet etching of GaN epilayer were grown on sapphire (0001) substrate by hydride vapor phase epitaxy (HVPE). As a results of scanning electron microscope (SEM) observation, three types of hexagonal etch pits (Edge, Screw, Mixed) were formed by the GaN epilayer thickness variations. A lot of etch pits, attributed to screw and mixed type TD, were observed at thinner epilayer, leading to high etch pit density. On the other hand, the thickness of GaN epilayer increased with the number of etch pits corresponding to edge and mixed dislocations, which are the majority of TDs are observed.

Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method (습식 화학적 식각 방법에 의한 시간에 따른 GaAs(100) 단결정 웨이퍼에서의 마이크로 구멍의 제작 및 분석)

  • Lee, Ha Young;Kwak, Min Sub;Lim, Kyung-Won;Ahn, Hyung Soo;Yi, Sam Nyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.155-159
    • /
    • 2019
  • Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with $H_2SO_4:H_2O_2:H_2O=1:5:5$. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.

Evolution of Surface Morphology During Wet-Etching of N-type GaN Using Phosphoric Acidic Solutions (인산을 이용한 n-type GaN의 습식식각을 통한 표면 Morphology 변화)

  • Kim, Jae-Kwan;Kim, Taek-Seung;Jo, Young-Je;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.169-173
    • /
    • 2008
  • Characteristics of etching and induced surface morphology variation by wet-etching of n-type GaN were investigated using phosphoric acidic solutions. Generally, the etch-rate was increased as the temperature of the etch solutions was increased, and the highest etch rate of about $300{\AA}/min$ was achieved at the temperature of $180^{\circ}C$. The morphology variation of the etched surface was observed by optical microscopy and atomic force microscopy. Initially, high density of hexagonal holes or pits were formed on the etched surface at the time of 40 min with the bimodal size of $20{\mu}m$ or $5{\mu}m$, respectively. However, as the etching time was increased further, the lateral size of the hexagonal holes or pits was increased, and finally, joined and merged together at the time of 100 min. This means that the etching of n-type GaN by phosphoric acidic solutions proceeded through the lateral widening and the merging of initial holes and pits.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications (AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용)

  • Park J.W.;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography (AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작)

  • Park Jeong-Woo;Lee Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

Effect On Glass Texturing For Enhancement of Light Trapping in Perovskite Solar Cells

  • Kim, Dong In;Nam, Sang-Hun;Hwang, Ki-Hwan;Lee, Yong-Min;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.2-387.2
    • /
    • 2016
  • Glass texturing is a sufficient method for changing the surface morphology to enhance the light trapping. In this study, glass texturing was applied to the perovskite solar cell for improving the current density. Glass substrates (back-side glass of FTO coated glass substrate) were textured by randomly structure assisted wet etching process using diluted HF solution at a constant concentration of etchants (HF:H2O=1:1). Then, the light trapping properties of suitable films were controlled over a wide range by varying the etching time (1, 2, 3, 4 and 5 min.). The surface texturing changed the reflected light in an angle that it can be reflected by substrate glass surface. As a result, Current density and cell efficiency were affected by light trapping layer using glass texturing method in perovskite solar cells.

  • PDF

Fabrication and Properties of Under Gate Field Emitter Array for Back Light Unit in LCD

  • Jung, Yong-Jun;Park, Jae-Hong;Jeong, Jin-Soo;Nam, Joong-Woo;Berdinsky, Alexander S.;Yoo, Ji-Beom;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • We investigated under-gate type carbon nanotube field emitter arrays (FEAs) for back light unit (BLU) in liquid crystal display (LCD). Gate oxide was formed by wet etching of ITO coated glass substrate instead of depositing $SiO_2$ on the glass substrate. Wet etching is easer and simpler than depositing and etching of thick gate oxide to isolate the gate metal from cathode electrode in triode. Field emission characteristic s of triode structure were measured. The maximum current density of 92.5 ${\mu}A/cm^2$ was when the gate and anode voltage was 95 and 2500 V, respectively at the anode-cathode spacing of 1500 ${\mu}m$.

  • PDF