Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.155

Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method  

Lee, Ha Young (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Kwak, Min Sub (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Lim, Kyung-Won (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Ahn, Hyung Soo (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Yi, Sam Nyung (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 155-159 More about this Journal
Abstract
Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with $H_2SO_4:H_2O_2:H_2O=1:5:5$. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.
Keywords
GaAs; wet-chemical etching; micro-hole; surface plasmon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Menard, M. A. Meitl, Y. Sun, J. Park, D. J. Shir, Y. Nam, S. Jeon and J. A. Rogers, Chem. Rev., 107, 1117 (2007).   DOI
2 D. L. Wilson, R. Martin, S. Hong, M. C. Golomb, C. A. Mirkin and D. L. Kaplan, PNAS, 98, 13660 (2001).   DOI
3 D. Choi, H. K. Yu, S. G. Jang and S. Yang, J. Am. Chem. Soc., 126, 7019 (2004).   DOI
4 O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberg and F. Cacialli, Nat. Nanotechnol., 4, 664 (2009).   DOI
5 F. Withers, T. H. Bointon, M. Dubois, S. Russo and M. F. Craciun, Nano Lett., 11, 3912 (2011).   DOI
6 Y. Lu and S. C. Chen, Nanotechnology, 14, 505 (2003).   DOI
7 Y. Bahk, B. J. Kang, Y. S. Kim, J. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C. -H. Park, F. Rotermund and D. -S. Kim, Phys. Rev. Lett., 115, 125501 (2015).   DOI
8 M. Najiminaini, F. Vasefi, B. Kaminska and J. J. L. Carson, Appl. Phys. Lett., 100, 043105 (2012).   DOI
9 C. Genet and T. W. Ebbesen, Nature, 445, 39 (2007).   DOI
10 A. Lesuffleur, H. Im, N. C. Lindquist and S. Oh, Appl. Phys. Lett., 90, 243110 (2007).   DOI
11 J. Parsons, E. Hendry, C. P. Burrows, B. Auquie, J. R. Sambles and W. L. Barnes, Phys. Rev. B, 79, 073412 (2009).   DOI
12 T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner and A. B. Dahlin, Small, 7, 1653 (2011).   DOI
13 K. Nakayama, K. Tanabe and H. A. Atwater, Appl. Phys. Lett., 93, 121904 (2008).   DOI
14 S. Iida, T. Sugimoto, S. Suzuki, S. Kishimoto and Y. Yagi, J. Cryst. Growth, 72, 51 (1985).   DOI
15 K. Gamo, Y. Ochiai and S. Namba, Jpn. J. Appl. Phys., 21, L792 (1982).   DOI
16 K. P. Hilton and J. Woodward, Electron. Lett., 21, 962 (1985).   DOI
17 R. J. Young, J. R. A. Cleaver and H. Ahmed, J. Vac. Sci. Technol. B, 11, 234 (1993).   DOI
18 Y. Sugimoto, M. Taneya, H. Hidaka and K. Akita, J. Appl. Phys., 68, 2392 (1990).   DOI
19 E. Miyauchi, H. Arimoto, H. Hashimoto and T. Utsumi, J. Vac. Sci. Technol., B, 1, 1113 (1983).   DOI
20 R. Cheung, S. Thoms, S. P. Beamont, G. Doughty, V. Law and C. D. W. Wilkinson, Electron. Lett., 23, 857 (1987).   DOI
21 J. L. Vossen and W. Kern, Thin film processes, p.403, J. L. Vossen, Academic press, London (1978).
22 J. S. Kim, Master Thesis (in Korean), p. 1-4, Korea Maritime and Ocean University, Busan (2004).
23 S. M. Sze, Physics of Semiconductor Devices, John Wiley, New York (2012).
24 Y. Ochiai, K. Gamo and S. Namba, J. Vac. Sci. Technol., B, 3, 67 (1985).
25 H. Y. Lee, Master Thesis (in Korean), p. 59-60, Korea Maritime and Ocean University, Busan (2018).