• Title/Summary/Keyword: Wet etching

Search Result 466, Processing Time 0.03 seconds

Fabrication of gate electrode for OTFT using screen-printing and wet-etching with nano-silver ink

  • Lee, Mi-Young;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.889-892
    • /
    • 2009
  • We have developed a practical printing technology for the gate electrode of organic thin film transistors(OTFTs) by combining screen-printing with wet-etching process using nano-silver ink as a conducting material. The screen-printed and wet-etched Ag electrode exhibited a minimum line width of ~5 um, the thickness of ~65 nm, and a resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, producing good geometrical and electrical characteristics for gate electrode. The OTFTs with the screen-printed and wet-etched Ag electrode produced the saturation mobility of $0.13cm^2$/Vs and current on/off ratio of $1.79{\times}10^6$, being comparable to those of OTFT with the thermally evaporated Al gate electrode.

  • PDF

Studies on chemical wet etching of GaN (GaN계 질화합물 반도체의 습식식각 연구)

  • 윤관기;이성대;이일형;최용석;유순재;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.398-400
    • /
    • 1998
  • In this paper, the etching studies for n-GaN were carried out using the wet chemical, the photo-enhanced-chemical, and the electro-chemical etching methods. The experimental results show that n-GaN is etched in diluted NaOH solution at room temperture and the etched thickness of NaOH and electron concentrations. Te etching rate of n-GaN samples with n.simeq.1*10$^{19}$ cm$^{-3}$ were used to compare the photo-enhanced-chemical etching with the electrochemical etching methods. The removed thickness was 680.angs./25min by the electrochemical etching methods. The removed thickness was 680 .angs./25min by the electrochemical etching method ad 784.angs./25min by the photoenhanced-chemical etching method. The patterns are 100.mu.m*100.mu.m rectangulars covered with SiO$_{2}$film. It is shown that the profile of etched side-wall of the pattern is vertical without dependance of the n-GaN orientations.

  • PDF

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Wet Etching Behaviors of Transparent Conducting Ga-Doped Zinc Oxide Thin Film by Organic Acid Solutions

  • Lee, Dong-Kyoon;Lee, Seung-Jung;Bang, Jung-Sik;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.831-833
    • /
    • 2008
  • 150 nm thick Ga-doped ZnO thin film, which was deposited by a sputtering process, was wet-chemically etched by using various organic acids such as oxalic, citric and formic acid. Wet etch parameters including etchant concentration and temperature are investigated for each etchant, and their effects on the etch rate and the feature of edge line are compared.

  • PDF

Studies on Wet Etching of PHEMT with Citric acid based solutions (Citric acid 조성 비율에 따른 식각 특성에 관한 연구)

  • 설우석;이복형;김성찬;이성대;김삼동;신동훈;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.33-36
    • /
    • 2001
  • In this paper, we have studied the characteristics of wet etching using citric acid based wet etchant. We have used the citric acid / hydrogen peroxide solution, citric acid / hydrogen peroxide / D.I. water solution. From our experimental result, a volumetric 1:3 ratio of citric acid and hydrogen peroxide and 1 : 3 : 1 ratio of citric acid, hydrogen peroxide, and D.I. water is shown to be a better wet etchant of PHEMT's system.

  • PDF

Wet Etch Characteristics of Magnetic Thin Films (자성 박막의 습식 식각 특성)

  • 변요한;정지원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.105-109
    • /
    • 2002
  • The wet etching characteristics of magnetic materials such as NiFe and CoFe were investigated in terms of etch rate and etch profile by using variouus etching solutions (etchants). Among the various etching solutions, HNO$_3$, HCl, and H$_2$SO$_4$were selected for the etching of magnetic materials and showed distinct results. In the case of NiFe films, faster etch rate were obtained with HNO$_3$solution. When NiFe films ere etched with HCl solution, white etch residues were found on the surface of etched films. From FEAES analysis of these etch residues, they were proved to be by-product from the reaction of NiFe with Cl element. CoFe thin films showed the similar trend to the case of NiFe films. They were etched fast in HNO$_3$ solution while Chl solution represented slow etching. The etch profiles of CoFe films showed smooth etch profile but revealed the partial etching around the patterns in HNO$_3$solution of relatively high concentration. It was observed that the etched surface was clean and smooth, and that white etch residues were also remained on the etched films.

The Improved Characteristics of Wet Anisotropic Etching of Si with Megasonic Wave (Megasonic wave를 이용한 실리콘 이방성 습식 식각의 특성 개선)

  • Che Woo-Seong;Suk Chang-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.81-86
    • /
    • 2004
  • A new method to improve the wet etching characteristics is described. The anisotropic wet-etching of (100) Si with megasonic wave has been studied in KOH solution. Etching characteristics of p-type (100) 6 inch Si have been explored with and without megasonic irradiation. It has been observed that megasonic irradiation improves the characteristics of wet etching such as an etch uniformity and surface roughness. The etching uniformity on the whole wafer with and without megasonic irradiation were less than ${\pm}1\%$ and more than $20\%$, respectively. The initial root-mean-square roughness($R_{rms}$) of single crystal silicon is 0.23 nm. It has been reported that the roughnesses with magnetic stirring and ultrasonic agitation were 566 nm and 66 nm, respectively. Comparing with the results, etching with megasonic irradiation achieved the Rrms of 1.7 nm on the surface after the $37{\mu}m$ of etching depth. Wet etching of silicon with megasonic irradiation can maintain nearly the original surface roughness after etching process. The results have verified that the megasonic irradiation is an effective way to improve the etching characteristics such as etch uniformity and surface roughness.

  • PDF

A Comparative Study of a Dielectric-Defined Process on AlGaAs/InGaAs/GaAs PHEMTs

  • Lim, Jong-Won;Ahn, Ho-Kyun;Ji, Hong-Gu;Chang, Woo-Jin;Mun, Jae-Kyoung;Kim, Hae-Cheon;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.304-311
    • /
    • 2005
  • We report on the fabrication of an AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) using a dielectric-defined process. This process was utilized to fabricate $0.12\;{\mu}m\;{\times}\;100 {\mu}m$ T-gate PHEMTs. A two-step etch process was performed to define the gate footprint in the $SiN_x$. The $SiN_x$ was etched either by dry etching alone or using a combination of wet and dry etching. The gate recessing was done in three steps: a wet etching for removal of the damaged surface layer, a dry etching for the narrow recess, and wet etching. A structure for the top of the T-gate consisting of a wide head part and a narrow lower layer part has been employed, taking advantage of the large cross-sectional area of the gate and its mechanically stable structure. From s-parameter data of up to 50 GHz, an extrapolated cut-off frequency of as high as 104 GHz was obtained. When comparing sample C (combination of wet and dry etching for the $SiN_x$) with sample A (dry etching for the $SiN_x$), we observed an 62.5% increase of the cut-off frequency. This is believed to be due to considerable decreases of the gate-source and gate-drain capacitances. This improvement in RF performance can be understood in terms of the decrease in parasitic capacitances, which is due to the use of the dielectric and the gate recess etching method.

  • PDF

A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF (DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구)

  • Kim, Do-Youne;Kim, Hyoung-Jae;Jeong, Hae-Do;Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

Laser-induced Thermochemical Wet Etching of Titanium for Fabrication of Microstructures (레이저 유도 열화학 습식에칭을 이용한 티타늄 미세구조물 제조)

  • 신용산;손승우;정성호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-38
    • /
    • 2004
  • Laser-induced thermochemical wet etching of titanium in phosphoric acid has been investigated to examine the feasibility of this method fur fabrication of microstructures. Cutting, drilling, and milling of titanium foil were carried out while examining the influence of process parameters on etch width, etch depth, and edge straightness. Laser power, scanning speed of workpiece, and etchant concentration were chosen as major process parameters influencing on temperature distribution and reaction rate. Etch width increased almost linearly with laser power showing little dependence on scanning speed while etch depth showed wide variation with both laser power and scanning speed. A well-defined etch profile with good surface quality was obtained at high concentration condition. Fabrication of a hole, micro cantilever beam, and rectangular slot with dimension of tess than 100${\mu}{\textrm}{m}$ has been demonstrated.