• Title/Summary/Keyword: Wet etch

Search Result 143, Processing Time 0.047 seconds

Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer ($Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성)

  • Noh Dong-Sun;Kim Dea-Eun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

Influence of Sodium Hypochorite & EDTA on the Microtensile Bond Strength of Ethanol Wet Bonding (Ethanol Wet Bonding에서 NaOCl과 EDTA가 결합강도에 미치는 영향)

  • Kim, Deok-Joong;Song, Yong-Beom;Park, Sang-Hee;Kim, Hyoung-Sun;Lee, Hye-Yoon;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • Sodium hypochlorite and ethylene diamine tetra acetic acid are substances usually used during endodontic treatment. Several studies found that the bonding was negated with certain irrigants and some of the used irrigants have demineralizing and chealating effects, so it was advocated to omit the etching step in etch and rinse adhesive systems. The purpose of this in vitro study was to evaluate the influence of NaOCl & EDTA on the bonding strength of ethanol wet bonding. Thirty human molars were selected and mesiodistally sectioned into halves, thus providing sixty specimens. The specimens were randomly assigned to 4 groups(n=15) according to the irrigant regimen used : (1) irrigated with distilled water for 10min (control); (2) irrigated with 5.25% NaOCl(10min), flushed with 5.25% NaOCl(1min) (3) irrigated with 5.25% NaOCl, flushed with 17% EDTA (4) irrigated with 5.25% NaOCl, flushed with 17% EDTA. Each group was acid-etched with 37% phosphoric acid(except group 4) and had their dentin surfaces dehydrated with ethanol solutions : 50%, 70%, 80%, 95%, 3x100%, 30s for each application. After dehydration, a primer( 50% all bond 3 resin + 50% ethanol) was used, followed by the adhesive(ALL-BOND 3 RESIN) application. Resin composite build-ups were then prepared using an incremental technique. Specimens were sectioned into beams and submitted to a tensile load using a Micro Tensile Tester(Bisco Inc.). The data were statistically analyzed using one-way ANOVA and Tukey HSD at p<0.5 level. There was no significant difference on G1(control) and G2(irrigated with NaOCl only ). (p>0.05). G3(flushed with EDTA) showed significantly high tensile bonding strength compared to the G2 (p<0.05). G4( treated with EDTA but no acid-etching) was significantly lower value than G3. (p<0.05) Although there was no significant difference, 5.25% NaOCl seemed to have an adverse effect on the bonding strength of ethanol wet bonding. The flushing with EDTA after NaOCl irrigation prevents the decrease of bonding strength. The use of 17% EDTA as a final flush can enhance the bonding strength but EDTA flushing can't substitute for a acid-etching.

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

The study of evaluating surface characteristics and effect of thermal annealing process for AlN single crystal grown by PVT method (PVT법으로 성장된 AlN 단결정의 표면 특성 평가 및 고온 어닐링 공정의 효과에 대한 연구)

  • Kang, Hyo Sang;Kang, Suk Hyun;Park, Cheol Woo;Park, Jae Hwa;Kim, Hyun Mi;Lee, Jung Hun;Lee, Hee Ae;Lee, Joo Hyung;Kang, Seung Min;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.143-147
    • /
    • 2017
  • To evaluate surface characteristics and improve crystalline quality of AlN single crystal grown by physical vapor transport (PVT) method, wet chemical etching process using $KOH/H_2O_2$ mixture in a low temperature condition and thermal annealing process was proceeded respectively. Conventional etching process using strong base etchant at a high temperature (above $300^{\circ}C$) had formed over etching phenomenon according to crystalline quality of materials. When it occurred to over etching phenomenon, it had a low reliability of dislocation density because it cannot show correct number of etch pits per estimated area. Therefore, it was proceeded to etching process in a low temperature (below $100^{\circ}C$) using $H_2O_2$ as an oxidizer in KOH aqueous solution and to be determined optimum etching condition and dislocation density via scanning electron microscope (SEM). For improving crystalline quality of AlN single crystal, thermal annealing process was proceeded. When compared with specimens as-prepared and as-annealed, full width at half maximum (FWHM) of the specimen as-annealed was decreased exponentially, and we analyzed the mechanism of this process via double crystal X-ray diffraction (DC-XRD).

Fabrication of Large Area Transmission Electro-Absorption Modulator with High Uniformity Backside Etching

  • Lee, Soo Kyung;Na, Byung Hoon;Choi, Hee Ju;Ju, Gun Wu;Jeon, Jin Myeong;Cho, Yong Chul;Park, Yong Hwa;Park, Chang Young;Lee, Yong Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.220-220
    • /
    • 2013
  • Surface-normal transmission electro-absorption modulator (EAM) are attractive for high-definition (HD) three-dimensional (3D) imaging application due to its features such as small system volume and simple epitaxial structure [1,2]. However, EAM in order to be used for HD 3D imaging system requires uniform modulation performance over large area. To achieve highly uniform modulation performance of EAM at the operating wavelength of 850 nm, it is extremely important to remove the GaAs substrate over large area since GaAs material has high absorption coefficient below 870 nm which corresponds to band-edge energy of GaAs (1.424 eV). In this study, we propose and experimentally demonstrate a transmission EAM in which highly selective backside etching methods which include lapping, dry etching and wet etching is carried out to remove the GaAs substrate for achieving highly uniform modulation performance. First, lapping process on GaAs substrate was carried out for different lapping speeds (5 rpm, 7 rpm, 10 rpm) and the thickness was measured over different areas of surface. For a lapping speed of 5 rpm, a highly uniform surface over a large area ($2{\times}1\;mm^2$) was obtained. Second, optimization of inductive coupled plasma-reactive ion etching (ICP-RIE) was carried out to achieve anisotropy and high etch rate. The dry etching carried out using a gas mixture of SiCl4 and Ar, each having a flow rate of 10 sccm and 40 sccm, respectively with an RF power of 50 W, ICP power of 400 W and chamber pressure of 2 mTorr was the optimum etching condition. Last, the rest of GaAs substrate was successfully removed by highly selective backside wet etching with pH adjusted solution of citric acid and hydrogen peroxide. Citric acid/hydrogen peroxide etching solution having a volume ratio of 5:1 was the best etching condition which provides not only high selectivity of 235:1 between GaAs and AlAs but also good etching profile [3]. The fabricated transmission EAM array have an amplitude modulation of more than 50% at the bias voltage of -9 V and maintains high uniformity of >90% over large area ($2{\times}1\;mm^2$). These results show that the fabricated transmission EAM with substrate removed is an excellent candidate to be used as an optical shutter for HD 3D imaging application.

  • PDF

Optimization of Backside Etching with High Uniformity for Large Area Transmission-Type Modulator

  • Lee, Soo-Kyung;Na, Byung-Hoon;Ju, Gun-Wu;Choi, Hee-Ju;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.319-320
    • /
    • 2012
  • Large aperture optical modulator called optical shutter is a key component to realize time-of-flight (TOF) based three dimensional (3D) imaging systems [1-2]. The transmission type electro-absorption modulator (EAM) is a prime candidate for 3D imaging systems due to its advantages such as small size, high modulation performance [3], and ease of forming two dimensional (2D) array over large area [4]. In order to use the EAM for 3D imaging systems, it is crucial to remove GaAs substrate over large area so as to obtain high uniformity modulation performance at 850 nm. In this study, we propose and experimentally demonstrate techniques for backside etching of GaAs substrate over a large area having high uniformity. Various methods such as lapping and polishing, dry etching for anisotropic etching, and wet etching ([20%] C6H8O7 : H2O2 = 5:1) for high selectivity backside etching [5] are employed. A high transmittance of 80% over the large aperture area ($5{\times}5mm^2$) can be obtained with good uniformity through optimized backside etching method. These results reveal that the proposed methods for backside etching can etch the substrate over a large area with high uniformity, and the EAM fabricated by using backside etching method is an excellent candidate as optical shutter for 3D imaging systems.

  • PDF

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

A Chemically-driven Top-down Approach for the Formation of High Quality GaN Nanostructure with a Sharp Tip

  • Kim, Je-Hyeong;O, Chung-Seok;Go, Yeong-Ho;Go, Seok-Min;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.48-48
    • /
    • 2011
  • We have developed a chemically-driven top-down approach using vapor phase HCl to form various GaN nanostructures and successfully demonstrated dislocation-free and strain-relaxed GaN nanostructures without etching damage formed by a selective dissociation method. Our approach overcomes many limitations encountered in previous approaches. There is no need to make a pattern, complicated process, and expensive equipment, but it produces a high-quality nanostructure over a large area at low cost. As far as we know, this is the first time that various types of high-quality GaN nanostructures, such as dot, cone, and rod, could be formed by a chemical method without the use of a mask or pattern, especially on the Ga-polar GaN. It is well known that the Ga-polar GaN is difficult to etch by the common chemical wet etching method because of the chemical stability of GaN. Our chemically driven GaN nanostructures show excellent structure and optical properties. The formed nanostructure had various facets depending on the etching conditions and showed a high crystal quality due to the removal of defects, such as dislocations. These structure properties derived excellent optical performance of the GaN nanostructure. The GaN nanostructure had increased internal and external quantum efficiency due to increased light extraction, reduced strain, and improved crystal quality. The chemically driven GaN nanostructure shows promise in applications such as efficient light-emitting diodes, field emitters, and sensors.

  • PDF

EFFECT OF SALIVARY CONTAMINATION OF TEETH ON MICROTENSILE BOND STRENGTH OF VAR10US DENTIN BONDING SYSTEMS. (타액에 의한 오염이 상아질 접착제의 미세전단결합강도에 미치는 영향)

  • Choi, Kyoung-Kyu;Ryu, Gil-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.203-208
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of salivary contamination of teeth on bonding efficacy of self-priming and self-etching DBSs. The materials used were Single Bond(SB, self-priming system, 3M), Unifil Bond(UB, self-etching system, GC), and Scotchbond Multi-Purpose Plus(SM, 3M) as control. Forty five human molars randomly allocated to three groups as dentin bonding systems tested and embedded in epoxy resin. Then the specimens were wet-ground to expose flat buccal enamel surface or flat occlusal dentin surface and cut bucco-lingually to form two halves with slow speed diamond saw. One of them was used under non-contamination, other under contamination with saliva. The bonding procedure was according to the manufacturer's directions and resin composite(Z-100, 3M Dental Products, St. Paul, MN) was built-up on the bonded surface 5mm high. The specimens were ground carefully at the enamel-composite interface with fine finishing round diamond bur to create an hour-glass shape yielding bonded surface areas of $1.5{\pm}0.1\textrm{mm}^2$. The specimens were bonded to the modified microtensile testing apparatus with cyanoacrylate, attached to the universal testing machine and stressed in tension at a CHS of 1mm/min. The tensile force at failure was recorded and converted to a tensile stress(MPa). Mean values and standard deviations of the bond strength are listed in table. One-way ANOVA was used to determine significant difference at the 95% level. The bond strength of SBMP and SB were not affected by salivary contamination, but that of UB was significantly affected by salivary contamination. These results indicate that DBSs with total etch technique seems less likely affected by salivary contamination in bonding procedure.