• Title/Summary/Keyword: Wet chemical synthesis

Search Result 74, Processing Time 0.025 seconds

Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles

  • Gokila, V.;Perarasu, V.T.;Rufina, R. Delma Jones
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2021
  • Synthesis of nanoparticles using green technology using plants is gaining significant attention as it is an environmentally friendly substitute to conventional physical and chemical methods. The present study was focused on the chemical and green synthesis of Iron Oxide nanoparticles from ferric chloride. The green synthesis was achieved by utilizing the bio components of Hibiscus rosa-sinensis. The Fe3O4 nanoparticles with the size range of 87-400 nm were synthesized by wet chemical reduction technique which are unstable, prone to aggregation while in green synthesis the phytochemicals present in the leaf extract acts as the capping as well as the reducing agent thus the green synthesized iron (III) oxide nanoparticles were naturally stabilized, spherical shaped and are in the size range of 2-80 nm. The results of both the protocols are compared and presented briefly.

Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation (Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성)

  • 이병우;김세호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method (습식 환원법에 의한 Cu 나노입자의 합성 동향)

  • Shin, Yong Moo;Chee, Sang-Soo;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2013
  • Interest in copper nanoparticles has increased as an alternative for substituting silver nanoparticles because of its lower cost and less electromigration effect than silver. In this paper, the recent research trends and main results in wet-chemical synthesis of sub-100 nm Cu nanoparticles were summarized. The characteristics of synthesis were discussed with a classification such as modified polyol synthesis, modified hydrothermal synthesis, solvothermal synthesis, and the others, focussing on effects of capping agents, reductants, and pH. Information on the oxidation of synthesized copper nanoparticles were additionally commented.

Chemical Preparation of $PbTiO_3$ Powder from Aqueous Solution (습식반응에 의한 $PbTiO_3$ 분말제조에 관한 연구)

  • 이경희;이병하;고영래
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.2
    • /
    • pp.39-43
    • /
    • 1985
  • This study presents the results of an overall effort to detemine the applicability of the chemical wet process informing lead titanate electronic ceramics. Although pure lead titanate has not proven to be an important technological materials when prepared via conventional processing procedures this work is interesting as a study of chemical wet processing and a way of preparing pbTiO3 for study. The result obtained from this experiment were as follows ; Optimum synthesis condition which synthesize PbTiO3 by chemical wet process was obtained by firing at 50$0^{\circ}C$ after mixing $Pb(OH)_2$- gel and $Ti(OH)_4$ -gel at 7$0^{\circ}C$ for 4 hours.

  • PDF

Fabrication of Size- and Shape- Controlled Gold Particles using Wet Chemical Process (환원 석출법을 이용한 모양과 크기가 제어된 금 입자의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • Shape and size controlled synthesis of gold particles has been studied by using wet-chemical method. When ${AuCl_4}^-$ in aqueous $HAuCl_4$ precursor was reduced using $Na_2SO_3$ as a reducing agent, mixtures of spherical, triangular and hexagonal particles were prepared in a few minutes. It was found that the shape selective oxidative etching by ${AuCl_4}^-\;+\;Cl^-$ anions and crystal growth took place simultaneously. As the ${AuCl_4}^-$ and $Cl^-$ concentration increased, yields of large triangular and hexagonal plate type particles increased, while the spherical particles decreased in most cases. Possible etching and growth mechanisms are discussed.

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Synthesis, Characterization and Application of Poly(4-vinylpyridine)-Supported Brønsted Acid as Reusable Catalyst for Acetylation Reaction

  • Borah, Kalyan Jyoti;Dutta, Papia;Borah, Ruli
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.225-228
    • /
    • 2011
  • Poly(4-vinylpyridine)-supported $Br{\phi}nsted$ acids (P4VP-HX) were prepared by wet impregnation technique. These supported acids were found as efficient heterogeneous green catalysts for acetylation of alcohol, amine and phenol with different catalytic activities. The wide application of P4VP-HX as reusable solid acid catalyst in organic reactions is possible because of its simple preparation and handling, stability, simple work up procedure.

Nanoporous Organo-functional Silica Synthesis Based on a Purely Inorganic Precursor

  • Oh, Chang-Sup;Koo, Kyung-Wan;Han, Chang-Suk;Kim, Jang-Woo;Kim, Heon-Chang;Lee, Yong-Sang;Choi, Young-Tai;Kim, Yong-Ha
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.516-521
    • /
    • 2009
  • In this study we report a rapid synthesis of nanoporous organo-functional silica (OFS) with unimodal and bimodal pore structures encompassing pores ranging from meso-to macroscale. The problems of tediousness and high production cost in the conventional syntheses are overcome by co-condensation of an inexpensive inorganic precursor, sodium silicate with an organosilane containing trimethyl groups. The insitu covalent anchoring of the non-polar trimethyl groups to the inner pore walls prohibits irreversible shrinkage of the wet-gel during microwave drying at ambient pressure and thus larger size pores (from ca. 20 to ca. 100 nm) can be retained in the dried silica. The drying process of the silylated wet-gels at an ambient pressure can be greatly accelerated upon microwave exposure instead of drying in an oven or furnace. Using this approach, anoporous and superhydrophobic silicas showing a wide variation in texture and morphology can be readily synthesized in roughly two hours. The effects of various sol-gel parameters solely on the textural properties of the organo-functional silica (OFS) have been investigated and discussed.