Browse > Article

Nanoporous Organo-functional Silica Synthesis Based on a Purely Inorganic Precursor  

Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program)
Koo, Kyung-Wan (Department of Defense Science and Technology, Hoseo University)
Han, Chang-Suk (Department of Defense Science and Technology, Hoseo University)
Kim, Jang-Woo (School of Display Engineering, Hoseo University)
Kim, Heon-Chang (Department of Chemical Engineering, Hoseo University)
Lee, Yong-Sang (Department of Chemical and Biomolecular Engineering, Sokang University)
Choi, Young-Tai (Korea Institute of Industrial Technology)
Kim, Yong-Ha (Department of Chemical Engineering, Pukyong National University)
Publication Information
Korean Journal of Metals and Materials / v.47, no.8, 2009 , pp. 516-521 More about this Journal
Abstract
In this study we report a rapid synthesis of nanoporous organo-functional silica (OFS) with unimodal and bimodal pore structures encompassing pores ranging from meso-to macroscale. The problems of tediousness and high production cost in the conventional syntheses are overcome by co-condensation of an inexpensive inorganic precursor, sodium silicate with an organosilane containing trimethyl groups. The insitu covalent anchoring of the non-polar trimethyl groups to the inner pore walls prohibits irreversible shrinkage of the wet-gel during microwave drying at ambient pressure and thus larger size pores (from ca. 20 to ca. 100 nm) can be retained in the dried silica. The drying process of the silylated wet-gels at an ambient pressure can be greatly accelerated upon microwave exposure instead of drying in an oven or furnace. Using this approach, anoporous and superhydrophobic silicas showing a wide variation in texture and morphology can be readily synthesized in roughly two hours. The effects of various sol-gel parameters solely on the textural properties of the organo-functional silica (OFS) have been investigated and discussed.
Keywords
Organo-functional silica; meso/macroporous; co-condensation; sodium silicate; microwave drying;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. Asefa, M. J. MacLachlan, N. Coombs, and G. A. Ozin, Nature 402, 867 (1999)   DOI
2 S. Illia, G. J. de A. A., C. Sanchez, B. Lebeaue, and J. Patrin, Chem. Rev. 102, 4093 (2002)   DOI   ScienceOn
3 R. Deshpande, D. M. Smith, and C. J. Brinker, J. Non-Cryst. Solids 144, 32 (1992)   DOI   ScienceOn
4 F. Schwertfeger, D. Frank, and M. Schimidt, J. Non-Cryst. Solids 225, 21 (1998)   DOI   ScienceOn
5 Y.-H. Kim, Y.-S. Ahn, J.-G. Yeo, and S. D. Bhagat, Micro. Meso. Mater. 96, 237 (2006)   DOI   ScienceOn
6 H. E. Rassy and A. C. Pierre, J. Non-Cryst. Solids 351, 1603 (2005)   DOI   ScienceOn
7 J. J. Barton, L. M. bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M. Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli, and O. M. Yaghi, Chem. Mater. 11, 2633 (1999)   DOI   ScienceOn
8 S. W. Kang and Y. S. Kim, J. Kor. Inst. Met. & Mater. 34, 1375 (1996)
9 K. S. W. Sing, D. H. Everett, R. A. W. Haul, and L. Moscou, Pure Appl. Chem. 57, 603 (1985)   DOI
10 W. Wihinall, T. Asefa, and G. A. Ozin, Adv. Funct. Mater.15, 1696 (2005)   DOI   ScienceOn
11 Y. H. Kim, G. B. Yi, Y. S. Ahn, J. G. Yeo, Y. T. Choi, and S. D. Bhagat, Micro. Meso. Mater. (2007), doi: 10.1016/j.micromeso.2007.03.026   DOI   ScienceOn
12 F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Angew. Chem. Int. 45, 3216 (2006)   DOI   PUBMED   ScienceOn
13 K. Ikari, K. Suzuki, and H. Imai, Langmuir 20, 11504(2004)   DOI   PUBMED   ScienceOn
14 S. D. Bhagat and A. V. Rao, Appl. Surf. Sci. 252, 4289(2006)   DOI   ScienceOn
15 H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995)   DOI   ScienceOn
16 J. H. Sun, Z. Shan, T. Maschmeyer, and M. O. Coppens, Langmuir 19, 8395 (2003)   DOI   ScienceOn
17 A. V. Rao, M. M. Kulkarni, D. P. Amalnerkar, and T. Seth, Appl. Surf. Sci. 206, 262 (2003)   DOI   ScienceOn
18 A. V. Rao, E. Nilsen, and M. A. Einarsrud, J. Non-Cryst. Solids 296, 165 (2001)   DOI   ScienceOn
19 Y.-H. Kim, M.-J. Moon, Y.-S. Ahn, J.-G. Yeo, and S. D. Bhagat, Solid State Sci. 9, 628 (2007)   DOI   ScienceOn
20 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemelka, and G. D. Stucky, Science 279, 548 (1998)   DOI   PUBMED   ScienceOn
21 M. H. Lim and A. Stein, Chem. Mater. 11, 3285 (1999)   DOI   ScienceOn
22 J. Wen and G. L. Wikes, Chem. Mater. 8, 1667 (1996)   DOI   ScienceOn
23 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359, 710 (1992)   DOI
24 D. W. Lee, S. J. Park, S. K. Ihm, and K. H. Lee, Chem. Mater. 19, 937 (2007)   DOI   ScienceOn
25 N. K. Raman, M. T. Anderson, and C. J. Brinker, Chem. Mater. 8, 1682 (1996)   DOI   ScienceOn
26 D. B. Lee, W. S. Shim, J. S. Jang, and Jae Chun Lee, Met. Mater. Int. 9, 299 (2003)   DOI
27 S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, J. Am. Chem. Soc. 121, 9611 (1999)   DOI   ScienceOn