• 제목/요약/키워드: Wet Process

검색결과 1,258건 처리시간 0.029초

Steel Cord 생산을 위한 초고속 습식 신선 패스 설계 (Pass Design of wet-Drawing with Ultra High Speed for Steel Cord)

  • 황원호;이상곤;김병민;고우식
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.785-790
    • /
    • 2005
  • High-speed multi-pass wet wire drawing has become very common for production of high-carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although, the wet wire drawing process is performed at a high speed usually above 1000m/min, greater speed is required to improve productivity. However, in the high-carbon steel wire drawing process, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breakage. In this study, the variations in wire temperature during the multi-pass wet wire drawing process were investigated. A multi-pass wet wire drawing process with 21 passes, which is used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final drawing speed to 2000m/min.

Trench MOSFET Technology의 Deep Trench 구조에서 WET Cleaning 영향에 대한 연구 (The Study of WET Cleaning Effect on Deep Trench Structure for Trench MOSFET Technology)

  • 김상용;정우양;이근만;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.88-89
    • /
    • 2009
  • In this paper, we investigated about wet cleaning effect as deep trench formation methods for Power chip devices. Deep trench structure was classified by two methods, PSU (Poly Stick Up) and Non-PSU structure. In this paper, we could remove residue defect during wet. cleaning after deep trench etch process for non-PSU structure device as to change wet cleaning process condition. V-SEM result showed void image at the trench bottom site due to residue defect and residue component was oxide by EDS analysis. In order to find the reason of happening residue defect, we experimented about various process conditions. So, defect source was that oxide film was re-deposited at trench bottom by changed to hydrophobic property at substrate during hard mask removal process. Therefore, in order to removal residue defect, we added in-situ SCI during hard mask removal process, and defect was removed perfectly. And WLR (Wafer Level Reliability) test result was no difference between normal and optimized process condition.

  • PDF

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

건식 및 습식 나노 혼화재를 사용한 시멘트 모르타르의 강도 특성 (Strength properties of Cement Mortar by the Nano admixture of dry process and wet process)

  • 김연희;최응규;박종근
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1452-1457
    • /
    • 2011
  • 실리카흄과 이산화티타늄을 건식 및 습식방식에 의해 나노화하여 시멘트 모르타르의 강도특성실험을 수행하였다. 실험변수는 건식 및 습식 방식으로 제조된 혼화재를 각각 5,10,15,20%의 첨가율로 하였다. 그 결과 실리카흄과 이산화티타늄을 사용했을 때의 시멘트 모르타르 강도 특성이 유사하게 나타났으며 건식과 습식 혼화재의 비교에서는 습식 혼화재를 사용했을 때가 더 큰 강도 특성을 보였다.

반송제어모드를 이용한 인라인 식각/세정장치의 ITO 전극형성기술 (ITO Patterning of an In-line Wet Etch/Cleaning System by using a Reverse Moving Control System)

  • 홍성재;임승혁;한형석;권상직;조의식
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.327-331
    • /
    • 2008
  • An in-line wet etch/cleaning system was established for the research and development in wet etch process as a formation of electrode such as metal or transparent conductive oxide layer. A reverse moving system was equipped in the in-line wet etch/cleaning system for the alternating motion of glass substrate in a wet etch bath of the system. Therefore, it was possible for the glass substrate to be moved back and forth and it was possible to reduce the size of the system by using the reversing moving system. For the effect of the alternating motion of substrate on the etch rate in the in-line wet etch bath, indium tin oxide(ITO) patterns were obtained through wet etch process in the in-line system in which the substrate was moved back and forth. From the CD(critical dimension) skews resulted from the ADI CD and ACI CD of the ITO patterns, it was concluded that the alternating motion of glass substrate are possible to be applied to the mass production of wet etch process.

코발트살리사이드를 위한 습식세정 공정 (Wet Cleaning Process for Cobalt Salicide)

  • 정성희;송오성
    • 한국표면공학회지
    • /
    • 제35권6호
    • /
    • pp.377-382
    • /
    • 2002
  • We investigated the appropriate wet cleaning process for Co-Ti-Si compounds formed on top of cobalt disilicide made from Co/Ti deposition and two rapid thermal annealing (RTA). We employed three wet cleaning processes, WP1 ($H_2$SO$_4$ etchant), WP2 ($NH_4$OH etchant), and WP3 which execute sequentially WP1 and WP2 after the first RTA. All samples were cleaned with BOE etchant after the second RTA. We characterized the sheet resistance with process steps by a four-point probe, the microstructure evolution by a cross detail sectional transmission electron microscope, a Auger depth profiler, and a X-ray diffractometer (XRD). We confirmed WP3 wet cleaning process were the most suitable to remove CoTiSi layer selectively.

BGA 현상 공정 용 수직 습식 장비 개발 및 공정 특성 평가 (Development of Vertical Wet Equipment for BGA Develop Process and Evaluation of Its Process Characteristics)

  • 유선중
    • 마이크로전자및패키징학회지
    • /
    • 제16권3호
    • /
    • pp.45-51
    • /
    • 2009
  • 본 연구에서는 습식 방법으로 진행 되는 BGA 현상 공정에 있어 기존의 수평 장비를 대체하여 수직 장비를 개발하였다. 지그를 이용하여 기판을 수직 방향으로 고정한 후 습식 공정을 진행함으로써 기존 수평 장비의 단점인 롤러와 기판 표면 회로 패턴의 충돌로 인한 회로 패턴 손상 문제를 원천적으로 제거하고자 하였다. 개발된 수직 장비의 공정 특성을 수평 장비와 비교 평가 하기 위하여 유니포미터 측정, 회로 패턴 손상 평가 및 불량 평가의 실험을 수행하였다. 평가 결과 수직 장비의 유니포미티 특성은 수평 장비와 동일한 수준이며 중력 방향의 액흐름에 대한 공정 특성 영향은 미미한 것으로 확인 되었다. 또한, 수평 장비 대비 $3{\sim}4{\mu}m$ 더 미세한 회로 패턴에 대해여 손상 없이 공정을 진행 할 수 있음을 확인 할 수 있었다.

  • PDF

새로운 ICP 장치를 이용한 고온 초전도체의 Dry Etching과 기존의 Wet Etching 기술과의 비교 (Comparison of the Existing Wet Etching and the Dry Etching with the ICP Process Method)

  • 강형곤;임성훈;임연호;한윤봉;황종선;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제14권2호
    • /
    • pp.158-162
    • /
    • 2001
  • In this report, a new process for patterning of YBaCuO thin films, ICP(inductively coupled plasma) method, is described by comparing with existing wet etching method. Two 100㎛ wide and 2mm long YBaCuO striplines on LaAlO$_3$ substrates have been fabricated using two patterning techniques. And the properties were compared with the critical temperature and the SEM photography. Then, the critical temperatures of two samples were about 88 K, but the cross section of sample using ICP method was shaper than that using the wet etching method. ICP method can be used as a good etching technique process for patterning of YBaCuO superconductor.

  • PDF

Influence of Wet Annealing on the Performance of SiZnSnO Thin Film Transistors

  • Han, Sangmin;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.34-36
    • /
    • 2015
  • Amorphous SiZnSnO(SZTO) thin film transistors(TFTs) have been fabricated by RF magnetron sputtering process, and they were annealed in air and in wet ambient. The electrical performance and the structure were analyzed by I-V measurement, XPS, AFM, and XRD. The results showed improvement in device performance by wet annealing process compared to air annealing treatment, because free electron was shown to be increased due to reaction of oxygen and hydrogen generating oxygen vacancy. This is understood by the generation of free electrons. We expect the wet annealing process to be a promising candidate to contributing to high electrical performance of oxide thin film transistors for backplane device applications.

TMCP강의 수중 ARC용접 실험과 용접성 (An Experimental Study on Underwater Wet Arc Welding and Weldability)

  • 오세규;김민남
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.67-73
    • /
    • 1987
  • The feasibility for a practical use of underwater wet arc welding process is experimentally investigated by using low hydrogen and high oxide type electrodes and TMCP steel plates. Main results are summarized as follows: 1)The absorption speed of the coated low hydrogen and high titanium oxide type eletrodes becomes constant after about 30 minutes in water, and more steeping time in water does not influnce welding arc behavior. 2) By bead appearance and X-ray inspection, the high titanium oxide type electrode is better than the low hydrogen type in underwater arc welding process. 3) The mechanical properties of underwater wet arc welds depend upon welding conditions more than those of in-air welds, and the optimum welding condition can be obtained. 4) Because of quenching effect by rapid cooling rate in underwater wet welding, the maximum hardness of HAZ is increased relatively higher in underwater wet welding, process.

  • PDF