• Title/Summary/Keyword: Wet Construction

Search Result 318, Processing Time 0.026 seconds

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Characterization of Insulation Finish Material Using Inorganic Wet Treatment Fly Ash (무기성 습식 처리 플라이애시를 활용한 단열 외피 마감재의 특성 평가)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Young;Kim, Deuak-Mo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.389-394
    • /
    • 2019
  • In this study, a functional inorganic insulation as TiO2 and inorganic wet fly ash were used to evaluate the physical performance and thermal environment of an exterior finish that can improve the thermal environment of a building. The performance evaluation of the finish was based on the KS F 4715 thin coating material and the thermal environment. When TiO2 was added, the physical performance was lowered at 10% or more, and the inorganic wet-treated fly ash increased the physical performance by 10%. In the thermal environmental evaluation, the surface temperature reduction effect of the inorganic wet-treated fly ash was low, but when used in combination with TiO2, it was effective to reduce the surface temperature and the internal temperature. As a result, the optimum combination of TiO2 and inorganic wet-treated fly ash for thermal environment control was found to be optimal when 5% of each mixture was used.

Influence of connection detailing on the performance of wall-to-wall vertical connections under cyclic loading

  • Hemamalini, S.;Vidjeapriya, R.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.437-448
    • /
    • 2020
  • In high rise buildings that utilize precast large panel system for construction, the shear wall provides strength and stiffness during earthquakes. The performance of a wall panel system depends mainly on the type of connection used to transfer the forces from one wall element to another wall element. This paper presents an experimental investigation on different types of construction detailing of the precast wall to wall vertical connections under reverse cyclic loading. One of the commonly used connections in India to connect wall to wall panel is the loop bar connection. Hence for this study, three types of wet connections and one type of dry connection namely: Staggered loop bar connection, Equally spaced loop bar connection, U-Hook connection, and Channel connection respectively were used to connect the precast walls. One third scale model of the wall was used for this study. The main objective of the experimental work is to evaluate the performance of the wall to wall connections in terms of hysteretic behaviour, ultimate load carrying capacity, energy dissipation capacity, stiffness degradation, ductility, viscous damping ratio, and crack pattern. All the connections exhibited similar load carrying capacity. The U-Hook connection exhibited higher ductility and energy dissipation when compared to the other three connections.

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

Estimation of Extreme Heat Exposure at Outdoor Construction Sites through Wet Bulb Globe Temperature Modeling (습구흑구온도지수 모델링을 통한 옥외 건설 현장의 고열 노출수준 추정)

  • Saemi, Shin;Hea Min, Lee;Nosung, Ki;Jung Soo, Chae;Sang-Hoon, Byeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.402-413
    • /
    • 2022
  • Objectives: In this study, the scale of exceeding the extreme heat exposure standard at the construction site was estimated using the nationally approved statistical data and wet bulb globe temperature modeling method. By comparing and analyzing the modeling results with the existing work environment monitoring results, the risk of heat exposure at outdoor construction sites was considered. Methods: Using the coordinates of second level administrative districts and meteorological observatories as the key, the automated synoptic observing system data and building permit data for 2021 were matched. The wet-bulb temperature was obtained using Stull's formula, and the globe temperature was obtained using the TgKMA2006 model. WBGT was calculated using these. Excess rates were obtained compared to exposure limits for heavy work-continuous work and moderate work-25% rest. It was compared with the results of the work environment monitoring in 2020. Results: As a result, 1,827,536 cases were estimated for 11,052 workplaces in one year. This is much higher than the 5,116 cases of 3818 workplaces of the existing work environment monitoring results. It is confirmed that the exposure limit was exceeded in 10.6~24.0% of the entire period and 70.2~84.1% of the peak period of the heat wave. It is very high compared to 0.9% of the existing work environment monitoring result. Conclusions: It is necessary to improve the system of monitoring and statistics related to extreme heat. Additional considerations are needed regarding WBGT estimation methods, meteorological data, and evaluation time. Various follow-up risk assessment studies for other industries and time series need to be continued.

Comparative Analysis of Substrate Wet Surface Adhesion and Substrate Movement Response Performance Testing Methods for Injection Type Repair Materials Used in Leakage Cracks of Concrete Structure in Underground Environment (지하 습윤 환경에서 콘크리트 구조물 균열 누수에 사용되는 주입형 보수재료의 부착 성능과 거동 대응 성능 평가의 상관성 분석 연구)

  • Kim, Soo-Yeon;Oh, Kyu Hwan;Oh, Snag-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.19-26
    • /
    • 2018
  • The focus of this study was centered around 15 common injection type water leakage repair materials (3 different types for each; synthetic polymer, cementitious, acrylic, epoxy, urethane) used in concrete structures of Korea and analyzing their wet surface adhesion performance in accordance to the ISO TS 16774 Test Method for Repair Materials for Water-leakage Cracks in Underground Concrete Structures, Part 4: Test Method for Adhesion on Wet Concrete Surface, and the results of this study was taken to be place under a comparative analysis with the results of the preceeding study on response to substrate movement performance study. The results of this comparative study showed that other than 1 specimen of 1 type of the acrylic and 3 specimens of 1 type of the synthetic polymer type materials, all of the 93% of the specimens used in this study showed stable adhesion on wet substrate surface, and we were able to determine that materials that have proper response properties against substrate movement are highly flexible and have high adhesion properties, but their adhesion properties on wet substrate would change based on their viscosity.

A Study of Thermal insulation method using extruded and expanded Poly-ethylene panel contacted to the bathroom inner wall facing on the outside (외기와 면하는 욕실 내측벽에 압출 발포폴리스티렌 패널을 사용한 단열시공기술에 관한 연구)

  • Lee Jong-Jin;Oh Chang-Won;Yeo Sung-Yi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.11-16
    • /
    • 2005
  • This study is for the insulation construction of inner wall in a bathroom facing on the outside in the housings. This new dry construction method can be constructed by a dry panel which is bonded tiles on the extruded and expanded poly-ethylene panel in stead of the existing wet construction method. Compared to the existing method, this panel is light movably and is constructed simply. These representative construction merits are getting wide span in a bath due to reducing wall thickness and saving construction period.

  • PDF

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.