• Title/Summary/Keyword: Well-regulated

Search Result 911, Processing Time 0.026 seconds

Effect of Ni Content and Atmosphere Gas Pressure on the Carburizability Low-Carbon Alloy Steels During Fluidized-bed Carburizing (유동상 침탄시 저탄소 합금강의 침탄능에 미치는 Ni 함량 및 분위기 가스압력의 영향)

  • Roh, Y.S.;Kim, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.3
    • /
    • pp.5-12
    • /
    • 1990
  • This study has been conducted to establish the carburizing characteristics of low carbon alloy steels with varying amount of Ni element gas-carburized for 2 hours at $930^{\circ}C$ in an atmosphere of 94% $N_2$-6% $C_3H_8$ gas mixture with some changes in gas pressure passing through the diffusion plate in the fluidized-bed furnace. The results obtained from the experiment are as follows : (1) Optical micrograph has shown that the carburized layer consists of retained austenite and plate martensite and that retained austenite increases as the pressure of gas mixture passing through the diffusion plate as well as Ni content increase. (2) Chemical analysis has shown that carbon potential increases and carburizability is also improved due to a less degree of fluidization as the pressures of gas mixtures passing through the diffusion plate increase, resulting in, however, a severe formation of soot, and the gas pressure is necessarily regulated. (3) It has been revealed that carbon concentration hardness values at a given distance measured from the surface within the carburized case. Increase with increasing the pressure of gas mixtures passing through the diffusion plate and decrease with increasing Ni content. (4) The effective case depth has been shown to almost linearly increase as the pressure of gas mixtures passing through the diffusion plate is increased and to decrease with increasing Ni content.

  • PDF

Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats

  • Shin, Dong-Su;Kim, Eun-Hyun;Song, Kwan-Young;Hong, Hyun-Jong;Kong, Min-Ho;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Objective: Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-peptidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. Methods: Sprague-Dawley rats were injected with total $20{\mu}l$ of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and $P2X_3$. To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. Results: TRPVl was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of $P2X_3$ immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. Conclusion: It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • Lee, Gyeong Hui;Eom, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

A review on sediment replenishment to river channel for natural recovery of regulated rivers below large dams (댐하류 조절하천의 자연성 회복을 위한 하천 유사환원 연구 고찰)

  • Ock, Giyoung;Jang, Chang-Lae;Kim, Bomchul;Choi, Mikyoung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.835-844
    • /
    • 2019
  • This study dealt with a systematic approach for sediment replenishment works which defines the artificial supply of coarse sediment to downstream river channels of dams. That is an increasing practice in Japanese, American and European rivers for the purpose of compensating sediment deficits downstream and rehabilitating geomorphological habitats below dams. We introduced five main objectives of the sediment replenishment, simply from construction of artificial spawning redds for anadromous fish to restoration of fluvial geomorphological process of river system. Then we suggested determination of sediment size distribution and quantity of coarse sediment as well as selecting an effective implementation method in corresponding to specific objectives and local restrictions in the basin, reservoir and river.

Neuroendocrine Control of Pituitary Gonadotropin Release (뇌하수체(腦下垂體) 성선자극(性腺刺戟)호르몬 분비(分泌)의 신경내분비적(神經內分泌的) 조절(調節))

  • Ryu, Kyung-Za
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.7 no.1_2
    • /
    • pp.3-10
    • /
    • 1980
  • Pituitary gonadotropes, as target cells, exhibit cyclic changes in terms of LH and FSH release in synchrony with the estradiol levels. The ultimate release is determined by the relative size of the two pools of gonadotropins, which is regulated by the two controllers: LH-RH and estradiol. LH-RH appears to serve as a primary drive on the gonadotrope, stimulating gonadotropin synthesis, storage, and release. Estradiol amplifies the action of LH-RH and induces the development of a self-priming effect of LH-RH except that it impedes LH-RH mediated gonadotropin release. Negative and positive feedback action of estradiol is revealed to operate by different mechanisms. The pituitary capacity increases severalfold from early to late follicular phase, which is considered to be prerequisite for the development of mid-cycle surge. CNS-hypothalamic dopamine, norepinephrine, and prostaglandins, as well as LH-RH, are involved in the negative and positive feedback effects of estradiol. The possible mechanisms in the triggering of LH-RH release for the initiation of midcycle LH-RH surge are considered.

  • PDF

Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) could accelerate burn wound healing in hamster skin

  • Heo, Si-Hyun;Han, Kyu-Boem;Lee, Young-Jun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Han, Man-Deuk;Shin, Kil-Sang;Kim, Wan-Jong
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • Burns are one of the most devastating forms of trauma and wound healing is a complex and multicellular process, which is executed and regulated by signaling networks involving numerous growth factors, cytokines, and chemokines. Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was specifically produced from rice cell culture through use of a recombinant technique in our laboratory. The effect of rhGM-CSF on promotion of deep second-degree burn wound healing on the back skin of a hamster model was evaluated through a randomized and double-blind trial. As macroscopic results, hamster skins of the experimental groups showed earlier recovery by new epidermis than the control groups. Immunohistochemical reactions of proliferating cell nuclear antigen and transforming growth factor-b1, which are indicators of cell proliferation, were more active in the experimental group, compared with the control group. On electron microscopy, basal cells in the epidermis of the experimental group showed oval nuclei, prominent nucleoli, numerous mitochondria and abundant free ribosomes. In addition, fibroblasts contained well-developed rough endoplasmic reticulum with dilated cisternae. Bundles of collagen fibrils filled the extracellular spaces. Particularly, ultrastructural features indicating active metabolism for regeneration of injured skin at 15 days after burn injury, including abundant euchromatin, plentiful free ribosomes, and numerous mitochondria, were observed. These findings suggest that use of rhGM-CSF could result in accelerated deep second-degree burn wound healing in animal models.

Effect of Eriobotrya folium on Local Fat via Regulation of Lipase Secretion (비파엽추출물의 지방분해효소 조절을 통한 국소 지방분해 효능)

  • Lee, Woonkyeu;Choi, You Yeon;Yang, Woong Mo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.17 no.2
    • /
    • pp.101-110
    • /
    • 2017
  • Objectives: In this study, the lipolytic effects of Eriobotrya folium extract (EFE) on local fat was investigated in high fat diet (HFD)-induced obesity mouse and 3T3-L1 adipocytes. Methods: C57BL/6J mice (5 weeks) were fed HFD for 6 weeks to induce obesity. EFE (20 mg/ml, $100{\mu}l$) or saline ($100{\mu}l$) as a normal control was injected into left inguinal fat pad region, 3 times per a week for last 2 weeks. After sacrifice, body weight, and histological changes of the inguinal fat pad were evaluated. The expressions of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in inguinal fat pad were analyzed by Western blotting. Also, lipid accumulation and lipases release were determined in 3T3-L1 adipocytes by oil red o staining. Results: EFE significantly reduced the weight of inguinal fat pad and the size of adipocytes in HFD-induced obesity mice compared to control. The treatment of EFE up-regulated the expressions of HSL and ATGL in inguinal fat pads of obesity mice, as well as 3T3-L1 adipocytes. In addition, EFE inhibited the lipid accumulation in 3T3-L1 adipocytes in a dose dependent manner. Conclusions: EFE showed lipolytic effect on local fat of HFD-induced obesity mice by up-regulation of the lipases secretion. This suggests that EFE could be considered as anti-obese substance with lipolytic property on local fat.

Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells

  • Kim, Hong Seok;Kang, Yun Hee;Lee, Jisu;Han, Seung Ro;Kim, Da Bin;Ko, Haeun;Park, Seyoun;Lee, Myung-Shin
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.710-722
    • /
    • 2021
  • Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.

Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway

  • Han, Na-Ra;Ko, Seong-Gyu;Moon, Phil-Dong;Park, Hi-Joon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.610-616
    • /
    • 2021
  • Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.