• Title/Summary/Keyword: Well

Search Result 112,125, Processing Time 0.14 seconds

Re-evaluation of Cultural Heritage Preservation Committee Activities in 1961 (1961년 문화재보존위원회 활동 재평가)

  • OH Chunyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.144-166
    • /
    • 2024
  • The Cultural Heritage Committee is an important organization that has been deliberating on important matters related to the preservation of cultural properties in the Republic of Korea for more than 60 years since 1962. The Cultural Heritage Preservation Committee was active in 1961, which was a short period of about a year, but the minutes prepared at the time confirmed that it had the following meanings. First of all, legally, it was meaningful in that the concept of cultural property or intangible cultural property was used for the first time in Korea in laws and regulations on the term of office of professional members. These matters became the basis for the operation of the current Cultural Heritage Protection Act and the Cultural Heritage Committee. The following confirms that, unlike previously known activities, they were active despite political upheaval at the time. In spite of rapid regime change at the time, the committee had no change in its members, and the meetings continued without interruption. At that time, there was an exclusive relationship between different groups in relation to the preservation of cultural heritage, and this relationship was confirmed by the minutes that disappeared with the establishment of the Cultural Heritage Management Bureau, which integrated these groups. Finally, the form of the minutes prepared then shows the form of documentation at the time, where it is confirmed that the traditional documentation format is changing into a new form. It can be good research material in terms of modern and contemporary bibliography. As discussed earlier, the Cultural Heritage Conservation Committee of 1961 has historical significance in terms of legal and actual activities. The reason why the committee's activities were low valued is presumed to be that the minutes and related documents prepared at the time were not organized well due to the lack of a related administrative system. The minutes of the Cultural Heritage Conservation Committee record various facts about cultural heritage policies and decisions at that time. Therefore, analysis and research on these contents can reveal more facts about the cultural heritage policies and perceptions of that time.

A Case Study on the Willow Tree Fence(樹柵) in Gasan(假山) of Cheonggyecheon, Hanyang in the Joseon Dynasty Period (조선시대 한양 청계천 가산(假山)의 버드나무 수책(樹柵)에 관한 연구)

  • SHIM Sunhui;KIM Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.118-141
    • /
    • 2024
  • This study investigates and analyzes ancient literature records and iconographic materials to examine the Willow Tree Fence(樹柵) built on Gasan(假山) Cheonggyecheon(淸溪川) within the Hanyangdoseong, which was deliberately created to prevent flood damage during the Joseon Dynasty. Although there have been research cases related to the willow tree, it is difficult to find research conducted with the purpose of identifying its archetypal value by investigating and analyzing specific use cases of the willow tree and its historical background. Accordingly, this study aims to identify examples of the Willow Tree Fence(樹柵) created in Cheonggyecheon(淸溪川) during the Joseon Dynasty and reinterpret their value by illuminating the background of construction and regional characteristics. The main contents of this study are as follows. It is presumed that floods during the Joseon Dynasty were a great hazard. Between the 16th and 18th centuries, Joseon suffered severe damage from floods. By the time of King Yeongjo, all Four Mountains(四山) of the capital had become bare mountains, which was the cause of frequent floods. In the year of Gyeongjin(庚辰, the 26th year of King Yeongjo's reign, 1760), King Yeongjo dredged the channel bottom of Cheonggyecheon(淸溪川), which overflowed every rainy season, with the Juncheon Project(Channel-Dredging, 濬川事業) and planted willow trees on the mountain on both sides of the Ogan Water Gate(五間水門), as measures to prevent flood damage and soil loss. was implemented. In the <Doseongdo(都城圖)> in 《 Gwangyeodo(廣輿圖)》 produced in the mid-18th century during the reign of King Yeongjo, Gasan(假山), built in front of the Ogan Water Gate(五間水門) is visible, and in the record 『Sinjeung Donggukyeoji Seungnam(新增東國輿地勝)』 In the record, it appears that willows were planted on both sides of the mountain in the year of Gyeongjin(1760). With <Hanyangdoseong Map(漢陽都城圖)> produced in the 46th year of King Yeongjo's reign(1770), it is confirmed that willow trees formed a thick forest on Gasan Mountain near the Ogan Water Gate(五間水門) in the late 18th century. In addition, the Juncheon Project(Channel-Dredging, 濬川事業) and the creation of the Willow Tree Fence(樹柵) continued from the 15th century, the early Joseon Dynasty(朝鮮前期), to the end of the 19th century, the late Joseon Dynasty(朝鮮後期), through the records of ancient literature such as 『Annals of the Joseon Dynasty(朝鮮王朝實錄)』, 『Seungjeongwon Diary(承政院日記)』, and 『Records of Daily Reflections(日省錄)』. This study is meaningful in informing that the willow tree was a unique cultural heritage and traditional landscape resource by investigating the composition and use of the Willow Tree Fence in the Joseon Dynasty, which was a great basis for preventing floods and flood damage, as well as forming a beautiful landscape.

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer (동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 입자상 유기탄소 침강플럭스 추정)

  • Kim, Dong-Seon;Choi, Man-Sik;Oh, Hae-Young;Kim, Kyung Hee;Noh, Jae-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Export fluxes of particulate organic carbon were estimated for the first time by using $^{234}Th/^{238}U$ disequilibrium in the southwestern East Sea during August 2007. They were calculated by multiplying POC/$^{234}Th_p$ ratios of sinking particles (larger than 0.7 ${\mu}m$) obtained from 150-200 m water depths to $^{234}Th$ fluxes that were estimated by integrating $^{234}Th/^{238}U$ disequilibrium from surface to 100 m water depth. Export fluxes ranged from 14 to 505 mg C $m^{-2}$ $day^{-1}$, with the highest value at station A2 and the lowest value at station D4. Primary production was well correlated with export flux, indicating that it was a major factor controlling export flux. Export flux in the East Sea was generally higher than those estimated in the open ocean and similar to or somewhat higher than those in the continental marginal seas. Export flux/primary production (EF/PP) ratios varied from 0.29 to 0.62, with an average of 0.43 and were somewhat higher in the basin area than in the coastal area. EF/PP ratio in the East Sea was rather similar to those estimated in the North Sea and Chukchi Sea, but much higher than those in the Labrador Sea, Barents Sea, and Gulf of Lions. Therefore, the East Sea is one of the major areas where a large amount of organic carbon produced in the euphotic zone sinks into the deep layer below 200 m water depth.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

Use of Parasites for Stock Analysis of Salmonid Fishes (연어과 어류의 계군분석을 위한 기생충의 활용)

  • Kim, Jeong-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.2
    • /
    • pp.112-120
    • /
    • 2007
  • This paper reviews the use of parasites as 'biological tags' for studying stock analysis of salmonid fishes. Numerous definitions of stock concepts exist, but most of them essentially define a group of fish as having similar biological characteristics and being self-reproducing as stocks. It is important to manage fish stocks for human consumption and sustainable production and especially for salmonid fishes. Because these fry are considered as each country's property, it is necessary to identify and discriminate each fish stock in the open sea. Methods of separating fish stocks are very diverse. Artificial tags, parasites, otoliths scales and genetic characters have been used for stock analysis and each method has advantages and disadvantages. Of these parasites can be good biological tags because they are applied by nature at no cost. Parasites can be infected with susceptible host fishes when they enter into certain areas. Then if they move to the outside and are caught researchers can infer that the fish had been in the endemic area for a period of time during their life. Hence the host fish can be considered as naturally 'tagged' by parasites. However, if they do not pass the parasites-endemic. area, they will harbour no parasites. Therefore, researchers can discriminate each fish stocks and trace their migration routes with these biological tags. In this paper, several examples on the use of parasites as biological tags for studying salmonids, as well as other species, are listed. The advantages and limitations of parasites as biological tags are also discussed. Chum salmon (Oncorhynchus keta), the main salmonid species migrating to Korea, is distributed all around the North Pacific. Korean chum salmon are generally thought to move to the Sea of Okhotsk, the western North Pacific and the Bering Sea. However, there is no clear information on the distribution and migration pathways of Korean chum salmon, and no markers exist for separating them from others yet. Recent Korean chum salmon stock analysis including parasites information are mentioned.

Seasonal Variations of Particle Fluxes in the Northeastern Pacific (북동태평양 심해에서 관측된 퇴적물 입자 플럭스의 계절적 변동)

  • Kim, Hyung-Jeek;Kim, Dong-Seon;Hyeong, Ki-Seong;Kim, Kyeong-Hong;Son, Ju-Won;Hwang, Sang-Chu;Chi, Sang-Bum;Kim, Ki-Hyun;Khim, Boo-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.200-209
    • /
    • 2008
  • Particle fluxes were measured with a time-series sediment trap from July 2003 to June 2005 at the St. KOMO(KOMO; Korea Deep-Sea Environmental Study Long-Term Monitoring Station, $10^{\circ}30'N,\;131^{\circ}20'W$) in the northeastern Pacific. Total mass fluxes at a depth of 4,960 m showed distinct seasonal variations with high values in the winter(December-February) and spring(March-May) and low values in the summer(June-August) and fall(September-November). Biogenic origin fluxes also displayed distinct seasonal variations similar to total mass fluxes. Particularly, calcium carbonate fluxes in winter and spring were more than two times greater than those in summer and fall. The prominent seasonal variations of total mass and biogenic fluxes were closely related with the seasonal changes of primary production in the surface waters; in winter and spring, primary production increased due to the enhanced supply of nutrients below the surface mixed layer by strong wind and less stratification, whereas it decreased as a result of the less supply of nutrient by reduced wind speed and strong stratification in summer and fall. The seasonal variations of total mass and biogenic fluxes in this study were higher than the differences of total mass and biogenic fluxes caused by the environmental changes such as El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ events in the previous studies. In order to understand the effects of El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ on the particle flux, therefore, the seasonal variation of particle flux in the northeastern equatorial Pacific needs to be well defined.

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

Trade-off Analysis Between National Ecosystem Services Due to Long-term Land Cover Changes (장기간 토지피복 변화에 따른 국내 생태계서비스 간 상쇄효과(Trade-off) 분석)

  • Yoon-Sun Park;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.204-216
    • /
    • 2024
  • Understanding the trade-off effect in ecosystem services and measuring the interrelationships between services are crucial for managing limited environmental resources. Accordingly, in this study, we identified the dominant trends and increases and decreases in ecosystem services derived from changes in land cover over about 30 years and tracked changes in the relationships between ecosystem services that occurred over time. Through it, we determined the relationship between land cover changes and ecosystem service changes, as well as the distinct characteristics of service changes in different areas. The research primarily utilized the InVEST model, an ecosystem service assessment model. After standardizing the evaluation results between 0 and 1, it went through principal component analysis, a dimensionality reduction technique, to observe the time-series changes and understand the relationships between the services. According to the research results, the area of urbanized regions dramatically increased between 1989 and 2019, while forests showed a significant increase between 2009 and 2019. Between 1989 and 2019, the national ecosystem service supply witnessed a 13.9% decrease in water supply, a 10.5% decrease in nitrogen retention, a 2.6% increase in phosphorus retention, a 0.9% decrease in carbon storage, a 1.2% increase in air purification, and a 3.4% decrease in habitat quality. Over the past 30 years, South Korea experienced an increase in urbanized areas, a decrease in agricultural land, and an increase in forests, resulting in a trade-off effect between phosphorus retention and habitat quality. This study concluded that South Korea's environment management policies contribute to improving ecosystem quality, which has declined due to urbanization, and maximizing ecosystem services. These findings can help policymakers establish and implement forestry policies focusing on sustainable environmental conservation and ecosystem service provision.

A Study on Space Creation and Management Plan according to Characteristics by Type in Each Small-Scale Biotope in Seoul - Base on the Amphibian Habitats - (서울시 소규모 생물서식공간 유형별 특성에 따른 조성 및 관리방안 연구 - 양서류 서식지를 중심으로 -)

  • Park, Ha-Ju;Han, Bong-Ho;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.110-126
    • /
    • 2024
  • This study conducted a classification of small-scale biological habitats created in Seoul to analyze and synthesize location characteristics, habitat structure, biological habitat functions, and threat factors of representative sites, as well as derive creation and management problems according to the ecological characteristics. The aim was to suggest improvement measures and management items. Data collected through a field survey was used to categorize 39 locations, and 8 representative sites were selected by dividing them into location, water system, and size as classification criteria for typification. Due to the characteristics of each type, the site was created in an area where amphibian movement was disadvantageous due to low or disconnected connectivity with the hinterland forest, and the water supply was unstable in securing a constant flow and maintaining a constant water depth. The habitat structure has a small area, an artificial habitat structure that is unfavorable for amphibians, having the possibility of sediment inflow, and damage to the revetment area. The biological habitat function is a lack of wetland plants and the distribution of naturalized grasses, and threats include the establishment of hiking trails and decks in the surrounding area. Artificial disturbances occur adjacent to facilities. When creating habitats according to the characteristics of each type, it was necessary to review the possibility of an artificial water supply and introduce a water system with a continuous flow in order to connect the hinterland forest for amphibian movement and locate it in a place where water supply is possible. The habitat structure should be as large as possible, or several small-scale habitats should be connected to create a natural waterfront structure. In addition, additional wetland plants should be introduced to provide shelter for amphibians, and facilities such as walking paths should be installed in areas other than migration routes to prevent artificial disturbances. After construction, the management plan is to maintain various water depths for amphibians to inhabit and spawn, stabilize slopes due to sediment inflow, repair damage to revetments, and remove organic matter deposits to secure natural grasses and open water. Artificial management should be minimized. This study proposed improvement measures to improve the function of biological habitats through the analysis of problems with previously applied techniques, and based on this, in the future, small-scale biological habitat spaces suitable for the urban environment can be created for local governments that want to create small-scale biological habitat spaces, including Seoul City. It is significant in that it can provide management plans.