• Title/Summary/Keyword: Welding speed effect

Search Result 172, Processing Time 0.045 seconds

The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure

  • Pedram, Masoud;Khedmati, Mohammad Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-59
    • /
    • 2014
  • Nowadays aluminum stiffened plates are one of the major constituents of the marine structures, especially high-speed vessels. On one hand, these structures are subject to various forms of loading in the harsh sea environment, like hydrostatic lateral pressures and in-plane compression. On the other hand, fusion welding is often used to assemble those panels. The common marine aluminum alloys in the both 5,000 and 6,000 series, however, lose a remarkable portion of their load carrying capacity due to welding. This paper presents the results of sophisticated finite-element investigations considering both geometrical and mechanical imperfections. The tested models were those proposed by the ultimate strength committee of $15^{th}$ ISSC. The presented data illuminates the effects of welding on the strength of aluminum plates under above-mentioned load conditions.

A Study on the Efficient Welding Control System using Fuzzy-Neural Algorithm (퍼지-뉴럴 알고리즘을 이용한 효과적인 용접제어스시템에 관한 연구)

  • Kim, Gwon-hyung;Kim, Tae-yeong;Lee, Sang-bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.189-193
    • /
    • 1997
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding process adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body (차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구)

  • Lee, Kyung-Min;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding (MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석)

  • Ku Jin-Mo;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

[ $CO_2$ ] Laser Weldability and Formability of High Strength Steels for Tailored Blanks Applications (TWB용 고강도 박판 강재의 $CO_2$ 레이저 용접성 및 성형성)

  • Lee, Won-Beom;Park, Seong-Ho
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.365-372
    • /
    • 2004
  • The laser welding and its analysis were carried out using high power 6kW $CO_2$ laser for high strength steels such as DP, TRIP and conventional high strength steels. Bead on plate welding of thin sheet was examined to investigate the effect of weld variables of laser welding, and to obtain optimum welding condition. In order to investigate the formability of welded high strength steels, LDH test was added on this work. At high welding speed, the partial penetration was obtained by low heat input. Meanwhile, porosity was formed in the bead at low weld speed because of extremely higher heat input. The optimum welding condition of welding was derived from bead width, penetration and hardness property. It was shown that the DP steels had lower porosity level and smooth bead shape, therefore better laser weldability than TRIP steels and conventional high strength steels. In addition, LDH test shows that the welded DP steels have about $90\%$ formability value of base metal, although TRIP steel and conventional high strength steels have about $80\%$ formability value of its base metal.

  • PDF

The effects of Welding Conditions on Tensile Properties of Friction Stir Lap Welded of Dissimilar Al Alloy, A6K31/A5J32 (이종 알루미늄 합금 A6K31/A5J32 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yoon, Tae-Jin;Kim, Sang-Ju;Song, Sang-Woo;Hong, Jae-Keun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.72-79
    • /
    • 2011
  • The scope of this investigation is to evaluate the effect of joining parameters on the microstructural features and mechanical properties of dissimilar aluminum alloys, 1mm-thickness fixing AA6K31 at the top position and fixing AA5J32 at the bottom position. The friction stir lap welds were studied under various welding conditions, rotation speed of 1000, 1250, 1500rpm and welding speed of 100, 300, 500, 700mm/min, respectively. Mechanical test has been investigated in terms of tensile shear test and hardness test. The results showed that three type nugget shapes such as onion ring, zigzag type, hooking with the void, have been observed with revolutionary pitch. All welding conditions fractured at the HAZ of top plate, A6K31 and also the strength compare with base metal of lap joints were low efficiency, 52~63%. The thickness of fractured position was decreased with the lower heat input conditions. The relationships were excellent due to linear between the effective thickness of fractured position and peak load. The fractured position was the interface between joint area and not joint area. Also the strength efficiency compared with base metal was lower than decreasing rate of thickness because the hardness was decreased at fractured position due to softened material.

A study on the welding conditions that affect thermal deformation and mechanical property of Al 5083 non-ferrous alloy for eco-environmental leisure ships

  • Moon, Byung Young;Kim, Kyu Sun;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1190-1199
    • /
    • 2014
  • As a considerable, experimental approach, an autocarriage type of $CO_2$ welding machine and a MIG(metal inert gas) welding robot in the inert gas atmosphere were utilized in order to realize Al 5083 welding to hull and relevant components of green leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc.) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, nonferrous material, applied to manufacturing of eco-environmental leisure ships. With respect to welding condition to minimize the thermal deformation, 150 A and 16 V at the wire-feed rate of 6 mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(heat affected zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5 mm thickness, 284.62 MPa of tensile strength and 11.41 % of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification (WPS).

The Effect of Process Parameters on Sealing Quality for Ir-192 Radiation Source Capsule using Resistance Spot Welding (Ir-192 방사선원의 밀봉 용접부 품질에 미치는 저항용접 공정변수의 영향)

  • Han, In-Su;Son, Kwang-Jae;Lee, Young-Ho;Lee, You-Hwang;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae;Park, Chun-Deuk
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • Ir-192 radiation sealed sources are widely employed to the therapeutic applications as well as the non-destructive testing. Production of Ir-192 sources requires a delicate but robust welding technique because it is employed in a high radioactive working environment. A GTA(Gas Tungsten Arc) welding technique is currently well established for this purpose. However, this welding method requires a frequent replacement of the electrode, which results in the delay of the production to take a preparatory action such as to isolate the radiation sources from the working place before getting access to the welding machine. Hence, a resistance welding technique is considered as an alternative method of the GTA welding technique. The advantages of resistance welding are high welding speed and high-rate production. Also it has very long life of electrode comparing to GTA welding. In this study, the resistance welding system and proper welding conditions were established for sealing Ir-192 source capsule. As a results of various experiments, it showed that electrode displacement can be employed as a indicator to predict welding quality. We proposed two mathematical models(linear and curvilinear) to estimate electrode displacement with process parameters such as applied force, welding current and welding time by using regression analysis method. Predicting results of both linear and curvilinear model were relatively good agreement with experiment.

Effect of Laser Pulse Shaping on Reduction in Defects of Stainless Steel Sport Weld Metals (스텐레스 강 용접부에 형성되는 결함의 저감에 미치는 레이저 펄스 파형의 영향)

  • 김종도;카따야마세이지
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.13-21
    • /
    • 1997
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG Laser welding. A large porosity was formed in a keyhole mode of deep penetration weld metal of any stainless steel. Solidification cracks were present in Type 303 with about 0.3%s. The conditions for the formation of porosity were determined in further detail in Type 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of Type 310S. through high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

  • PDF

Effect of Welding Condition and Roller on Weldability of Al Coated Steel Sheet using Plasma Arc Welding (박판 알루미늄 도금강판의 플라즈마 용접성에 미치는 용접조건 및 롤러의 영향)

  • Lee, Tae-Woo;Park, Cheol-Ho;Kang, Nam-Hyun;Kim, Myung-Duk
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.54-58
    • /
    • 2012
  • Al-coated steel sheets with excellent heat and corrosion resistance are widely used in various applications. In welding of thin plate, some defects such as unmelted zone and metal-through occur easily in the beginning and ending of welding line. In the study, the welding defects in Al-coated steel sheets were investigated with respect to plasma arc current, height between Cu block and base metals, and using a roller to align the height of the base metal. Full penetration and voids free welds were obtained with a plasma arc current 52A and weld speed 2.3m/min. An unmelted zone increased and Ericshen rate decreased as the height between Cu block and base metal increased from 0 to 0.6mm. Using a roller moving ahead of the plasma arc, the length of unmelted zone decreased from 1.7mm to 0.5mm.