• Title/Summary/Keyword: Welded zone

Search Result 496, Processing Time 0.031 seconds

A study on the microstructure and micro-hardenss distribution in laser welded AZ31 magnesium alloy (AZ31 마그네슘합금 레이저 용접부의 미세조직 및 미소경도의 분포에 관한 연구)

  • Choi, Y.H.;Lee, M.Y.;Choi, S.H.
    • Laser Solutions
    • /
    • v.15 no.3
    • /
    • pp.11-15
    • /
    • 2012
  • The laser weld of AZ31 magnesium alloy was characterized with OM, EBSD and micros vickers hardness tester in experiment. EBSD analysis and micro-hardness measurements were carried out at the three regions (Equiaxed Zone, Columnar Dendrite Zone, Base Metal) of the welded AZ31Mg alloy sheets. The magnesium alloy show the rectangular shape bead in laser weld. EBSD analysis revealed that the three regions show the heterogeneous distribution of grain size and microtexture. Micro-hardness measurement also revealed that the heterogeneous distribution of microstructure contributed to the heterogeneous micro-hardness distribution in the three regions.

  • PDF

Friction Welding of Inconel 713C and SCM 440 (Inconel 713C와 SCM 440의 마찰용접)

  • 조현수;서성재
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.78-84
    • /
    • 1997
  • Friction welding technique was studied to weld the turbine wheel and shaft of a turbocharger. The welding parameters were selected to investigate the effects of variables on welding quality of Inconel 713C and SCM 440. Experimental results showed that the turbine wheel and shaft could be successfully welded by friction welding. The heat affected zone was identified to be 2 mm from the weld seam. After welding, the hardness profile was found to have sudden increase and decrease for inconel 713C and SCM 440 respectively. Tensile strength of welded specimens was higher than the required strength for all of the studied welding parameters. The central portion of fracture surfaces by bending had no defects such as crack.

  • PDF

A Method of Residual Stress Improvement by Plastic Deformation in the Pipe Welding Zone (소성변형에 의한 배관 용접부의 잔류응력 개선 방법)

  • Choi, Sang-Hoon;Wang, Ji-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.568-572
    • /
    • 2013
  • The main components, such as a reactor vessel, in commercial nuclear power plants have been welded to pipes with dissimilar metal in which Primary Water Corrosion Cracking (PWSCC) has been occurred. PWSCC has become a worldwide issue recently. This paper addresses the results of experimental and numerical analysis to prevent PWSCC by changing the stress profile that is tensile stress to compressive stress at interesting regions with plastic deformation generated by mechanical pressure. Based on the results of experimental and numerical analysis with a 6 inch pipe and dissimilar metal welded pipes, compressive stress 68~206 Mpa is generated at all locations of inner surface in the heat affected zone.

A Study on Damage Evaluation Austenitic Stainless Steel Tube Material (오스테나이트계 내식강 튜브 소재의 손상진단에 관한 연구)

  • Jo, Jong-Chun;Kim, Yeong-Seok;Kim, Hak-Min;Jeong, Hyeong-Jo
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.43-52
    • /
    • 1989
  • Material damage of Unifiner Change Heater: Tube used for nearly 20 years was evaluated and Mechanical tests such as tensile tests and creep-rupture tests were conducted to predict the residual life. After the investigation, any major damage or degradation was not found except the welded zone. Microstructural observation showed that most of delta-ferrite was transformed. to sigma-phase and consequently, the ductility was very much reduced. A KLA(Knife-Line Attack) crack with 60mm in length and 2.8mm in depth was found just near the welded zone, which is believed to be caused by intergranular corrosion. Creep-rupture tests, which are very essential to predict the residual life, showed that both used base and weld metals have similar results with the reference data.

  • PDF

Microstructures in friction-stir welded Al 7075-T651 alloy (Al 7075의 마찰교반 용접부 미세조직에 관한 연구)

  • Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.331-338
    • /
    • 2005
  • The grain structure, dislocation density and second phase particles in various regions including the stir zone(SZ), thermo-mechanically affected zone(TMAZ), and heat affected zone(HAZ) of a friction stir weld 6.35mm thick aluminum 7075-T651 alloy were investigated and compared with the base metal. The microstruectures of nugget zone were compared according to tool rotation speeds and tool transition speeds. The hardness profiles of nugget zone were increased, while decreasing rotation speed and increasing welding speed. The optimal microstructure was gained at the low rotation speed 800rpm and th high welding speed 124mm/min. The nugget microstructures of fracture surface, transgranular dimple and quasicleavage type were showed different fracture type with the HAZ, shear fracture type.

  • PDF

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

The Experimental Study of Flux Improvement of Wet Underwater Arc Welding Electrode (습식 수중 용접봉의 피복제 개발에 관한 기초연구)

  • Kim, Min-Nam;Kang, Jung-Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.28-36
    • /
    • 1999
  • Wet underwater arc welding process is investigated by using experimentally developed flux coated underwater arc welding electrode and SS400 steel plate of 12mm thickness as base metal. Three kinds of different flux covered wet arc welding electrode of 4mm diameter(BK-01, BK-02, BK-03) are individually developed, and one of the improved underwater welding electrode (BK-03) may be put to practical use for underwater wet arc welding process. The results obtained from this experimental study are as follows : 1. Arc stability of developed underwater wet welding electrode is better than that of the domestic covered arc welding electrode. 2. Workability of welding electrode, remove ability of slag and bead appearances using improved underwater wet welding electrode are remarkably better than that of others. 3. Heat affected zone of test specimen welded in the underwater gets to become a lot smaller than that of test specimen welded in the air, and the maximum hardness of heat affect zone of developed underwater wet welding electrode is lower to that of domestic arc welding electrode.

  • PDF