• 제목/요약/키워드: Welded plate heat exchanger

검색결과 12건 처리시간 0.03초

용접형 판형 열교환기의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental study of Heat Transfer and Pressure Drop Characteristics for the Welded Plate Heat Exchanger)

  • 정종윤;김성수;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.419-424
    • /
    • 2008
  • Heat transfer and pressure drop characteristics of welded plate heat exchanger are studied to apply it for the solution heat exchanger of 210RT absorption system. This study quantifies the effect of mass flow rate and strong solution concentration on the heat transfer coefficient and pressure drop in the plate heat exchanger. The concentration of weak solution is fixed at 55% and the strong solution varies 55%, 57%, and 59% in mass. The results show that the overall heat transfer coefficient and pressure drop increase linearly with increasing Reynolds number. It is also found that the heat transfer coefficient of hot side increases with increasing the concentration of strong solution while the strong solution concentration has no effect on heat transfer coefficient of cold side.

  • PDF

동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교 (Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area)

  • 함정균;김민준;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석 (A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers)

  • 정종윤;남상철;강용태
    • 대한기계학회논문집B
    • /
    • 제32권9호
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.

용접식 판형열교환기 헤더형상에 따른 채널 위치별 유량 분배 특성 고찰 (Investigation of Flow Distribution Characteristics at the Channel Location according to the Header Shape of Welded Plate Heat Exchanger)

  • 함정균;김의;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.7-13
    • /
    • 2019
  • To improve the flow distribution at channel locations in the welded plate heat exchanger with "L"-type inflow, the flow visualization of Model 1 was carried out. Besides, the characteristics of flow distribution was investigated experimentally according to the header shape. The inlet flow rate for each channel location was increased at the side channels but decreased at the central channels. In the case of Model 2, which has a slant structure added to the basic header of Model 1, the unevenness of inlet flow increased by 23% from 0.019 to 0.023 as compared to Model 1. On the other hand, Model 3, which has a baffle structure added to Model 2, showed 0.064 unevenness in inlet flow, which was a 36% reduction one compared to Model 1. To improve the distribution at each channel in the welded plate heat exchanger with "L"-type flow, it is necessary to improve the header external shape for the guide of flow as well as the baffle structure for reduction of vortex flow.

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding -)

  • 김종도;길병래;곽명섭;송무근
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

Plate & Shell 열교환기내에서 R-718의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer and Pressure Drop Characteristics for R-718 in Plate and Shell Heat Exchanger)

  • 강석현;서무교;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.270-275
    • /
    • 2000
  • In this study, heat transfer and Pressure drop characteristics for R-718 in the plate and shell heat exchanger (P&SHE) investigated experimentally. The plates are circular and welded into a stack which fits into a cylindrical shell in P&SHE. Although apparently very different from rectangular the compact brazed plate heat exchanger (CBE), the underlying flow passage structure through the P&SHE is the same as in the CBE. The R-718 between plate side and shell side was performed a counterflow heat exchange. Heat transfer characteristic of R-718 were measured for turbulent flow in P&SHE by using wilson plot technique. Heat transfer experiment Ivas performed in the $200{\leq}Re{\leq}500$ regime and Pressure drop experiment was performed in the $150{\leq}Re{\leq}1600$ regime. The purpose of this study is to investigate heat transfer and friction factor correlations for R-718 in P&SHE and to offer fundamental data for experiment

  • PDF

용접식 판형열교환기에서 작동유체의 유량과 온도변화에 따른 성능특성 고찰 (Investigation of Performance Characteristics in a Welded Plate Heat Exchanger according to Mass flow rate and Temperature)

  • 함정균;김민준;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.20-26
    • /
    • 2018
  • In this study, the performance characteristics of a welded plate heat exchanger was investigated experimentally. Performance tests were carried out according to the flow rate and inlet temperature of working fluid. As a result, the heat transfer capacity increased by 335.5 kW with an increasing the flow rate and temperature difference between hot and cold side. However, the overall heat transfer coefficient was increased with the increase of flow rate, and it was not effected significantly from inlet temperature difference between hot and cold working fluid. The pressure drop was increased by 55.78 kPa with an increasing the frow rate when the flow rate ratio between hot and cold side 1:1. However, the tendency of pressure drop was difference when flow rate ratio wasn't 1:1. In case that the flow rate ratio between hot and cold side was not 1:1, the pressure drop at the low flow rate side was higher than that when the flow rate ratio was 1:1, while pressure drop of the other side was decreased compared to that when the flow rate ratio was 1:1.

순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(II) - 중첩부 길이변화에 따른 영향 - (The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (II) - The Effect According to Control of Overlap Weld Length -)

  • 김종도;김지성
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.69-74
    • /
    • 2016
  • Because the pure titanium has superior corrosion resistance and formability compared with different material, it is widely used as material of welded heat exchanger. When the welding of heat exchanger is carried out, certain area in which welding start and end are overlapped occurs. The humping of back bead is formed in the overlap area due to partial penetration. Thus in this study, the experiments were carried out by changing the length and wave shape of overlap area, and then the weldabiliay was evaluated through the observation of microstructure, the measurement of hardness and tensile-shear strength test in the overlap area. When overlap length was 9.8mm, humping bead was suppressed. The microstructure of overlap area coarsened and its hardness increased due to remelting. As a result of tensile-shear strength test in the overlap area according to applying the wave shape control, it was confirmed that the overlap area applied wave shape control had more excellent yield strength and ductility.

타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가 (Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding)

  • 조평석;윤창석;황효운;이동근
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.