• Title/Summary/Keyword: Welded Details

Search Result 71, Processing Time 0.027 seconds

A Study on the Fatigue Behavior of the Welded Structural Details in Plate Girder (플레이트거더 용접구조상세의 피로거동에 관한 연구)

  • Lee, Myeong-Gu;Lee, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 2008
  • The objective of this study is to examine fatigue strength of the welded details. In order to attain the goal of this study, the bending fatigue tests was performed for four kinds of welded details used in steel bridges, such as in-plane gusset, out-of-plane gusset, cruciform, and cover plate. The effect of the length of welded attachment on fatigue strength was greater in out-of-plane gusset than in in-plane gusset. The fatigue strength of welded details with short attachment was superior to that with long attachment. Fatigue strength of welded details with transversely loaded welds was lower than that with longitudinally loaded welds, and those results were not satisfied with AASHTO specifications. For the fatigue strength of cover plate, cover plate with rectangular section was superior to that with tapered section. It was found that the fatigue crack initiates at the points of stress concentration which are the boundary between the base metal and the bead of weld in the part of the longitudinal edge of attachment, and propagates first along the boundary and along the perpendicular to the direction of the principle stress in the base metal of welded tip.

An experimental study of connections between I-beams and concrete filled steel tubular columns

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.303-315
    • /
    • 2004
  • Frame composed of concrete-filled steel tubular columns and I-shaped steel beam has been researched in order to development reasonable connection details. The present paper describes the results of an experimental program in four different connection details. The connection details considered include through-bolt between I-shaped steel beams and concrete-filled steel tubular columns and two details of welded connections. One of the welded connection details is stiffened by angles welded in the interior of the profile wall at the beam flange level. The specimens were tested in a cruciform loading arrangement with variable monotonic loading on the beams and constant compressive load on the column. For through-bolt details, the contribution of friction and bearing were investigated by embedding some of the bolts in the concrete. The results of the tests show that through-bolt connection details are very ductility and the bearing is not important to the behavior of these moment connections. The angles welded in the interior of the profile wall increase the strength and stiffness of the welded connection detail. In addition, the behavior curves of these connections are compared and some interesting conclusions are drawn. The results are summarized for the strength and stiffness of each connection.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF

An Experimental Study of the Fatigue Specimen for the Typical Structural Details of the Steel Bridge (강교량의 표준적 구조상세에 대한 실험적 연구)

  • Chung, Yeong Wha;Jo, Jae Byung;Bae, Doo Byong;Jung, Kyoung Sup;Woo, Sang Ik
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.463-473
    • /
    • 2000
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. The welded details included four kinds of welded details corresponding to the categories C, D, E and E' which represent the flange attachment details, web attachment details, transverse stiffeners and cover-plate details. Tensile fatigue tests were performed. The test results were compared with other available test results and the fatigue criteria of AASHTO, JSSC and Eurocode specifications. Generally, our test results were well agreed with other test results and satisfied with above-mentioned fatigue design provisions. However, it was found that transversely loaded weld-details showed lower fatigue strength than longitudinally loaded weld-details in transverse stiffener detail, and the test results of those details were not satisfied with AASHTO fatigue provisions. Examining the effect of length of gusset plate attachment details, welded details with longer attachment showed relatively lower fatigue strength, especially for the out-of-plane gusset plate details. It is recommended to perform additional fatigue tests with various loading and detail parameters and to establish the more detailed fatigue categories such as Eurocode or JSSC

  • PDF

Comparison of hot spot stress evaluation methods for welded structures

  • Seo, Jung-Kwan;Kim, Myung-Hyun;Shin, Sang-Beom;Han, Myung-Soo;Park, June-Soo;Mahendr, Mahen;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-210
    • /
    • 2010
  • In this paper, different evaluation methods of Hot Spot Stresses (HSS) have been applied to four different welded structure details in order to compare them and to illustrate their differences. The HSSs at failure-critical locations were calculated by means of a series of finite element analyses. There was good overall agreement between calculated and experimentally determined HSS on the critical locations. While different methods and procedures exist for the computation of the structural hot-spot stress at welded joints, the recommendations within the International Institute of Welding (IIW) guideline concerning the 'Hot Spot Stress' approach were found to give good reference stress approximations for fatigue-loaded welded joints. This paper recommends and suggests an appropriate finite element modeling and hot spot stress evaluation technique based on round-robin stress analyses and experimental results of several welded structure details.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Experimental Study on the Fatigue Behavior of Welded Joints (용접 이음 형상별 피로거동에 관한 실험적 연구)

  • Goo, B.C.;Kim, J.H.;Oh, C.L.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.359-364
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates and longitudinal butt welded plates were tested. S-N curves for the above specimens were obtained and analyzed

  • PDF

Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms

  • Lee, Seong-Hui;Yang, Il-Seung;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.261-279
    • /
    • 2010
  • Generally, a box tube, which is used for an existing square CFT structure, is made by welding four plates. The manufacturing efficiency of this steel tube is poor, and it also needs special welding technology to weld its internal diaphragm and the through diaphragm. Therefore, an interior-anchor-type square steel tube was developed using the method of cold-forming thin plates to prevent welding of the stress concentration position, and to maximize the section efficiency. And, considering of the flow of beam flange load, the efficiency of erection and the weldability of the diaphragm to thin walled steel column, the external diaphragm connection was selected as the suitable type for the welded built-up square CFT column to beam connection. And, an analytical study and tests were conducted to evaluate the structural performance of the suggested connection details and to verify the suggested equations for the connection details. Through this study, the composite effect of the internal anchor to concrete, the resistance and stress distribution of the connections before and after the existing column is welded to the beam, the effective location of welding in connection were analyzed.

An Experimental Study on the Fatigue Strength of Rolling Stock Structures (철도차량 구조물의 피로강도에 관한 실험적 연구)

  • Goo Byeong-choon;Kim Jae-Hoon;Oh Chang-rok;Kim Dae-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.878-882
    • /
    • 2004
  • We investigated the effect of weld details on fatigue behavior of a material, JIS SM 490 A, with yielding strength of about 350 MPa and tensile strength of about 520 MPa. Tensile tests, instrumented indentation tests and fatigue tests were carried out on double V-grooved butt weld plates such as reinforcement removed, as-welded and weld toe ground. In addition plates with transverse fillet welded web, load carrying cruciform fillet welded plates, non-load-carrying cruciform fillet welded plates, longitudinal butt welded plates and welded rectangular life-size box beams were tested. S-N curves for the above specimens were obtained and analyzed.

  • PDF

Fatigue Strength of In-plane Welded Attachments (면내 거셋 용접연결부의 피로강도)

  • Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.629-637
    • /
    • 2003
  • This s paper presented the results of the three phases of fatigue tests to determine the fatigue strength of in-plane welded gusset joints, which are the most common details inevitably existing in the region of high stress range. A total of 57 fatigue specimens with varying thickness and strengths were made and tensile fatigue tests performed. One full-scale beam fatigue test was also performed. The validity of the fatigue strength of those details in the specification was confirmed, with the effects of thickness of flanges and welded attachments, length of attachments, and strength of applied steel examined. The characteristics of crack initiation and propagation were also observed. The test result was evaluated by comparing it with other test data and fatigue criteria of other countries. To determine the degree of stress concentration in the weld toe depending on geometric configuration such as attachment length and transition radius, analyses were performed. Compared to the present specification, analytical results indicate the need to revise and subdivide the detail categories.