• 제목/요약/키워드: Welded Beam

검색결과 312건 처리시간 0.026초

Solving design optimization problems via hunting search algorithm with Levy flights

  • Dogan, Erkan
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.351-368
    • /
    • 2014
  • This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

경수로 연료용 지르칼로이-4 지지격자의 레이저용접부 조사 (Investigation of the Laser Welded Specimens of Zircaloy-4 Spacer Grids for PWR Fuel Assembly)

  • 김수성;송기남;윤경호;이강희
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.39-41
    • /
    • 2006
  • The weld quality of spacer grids in Pressurized Water Reactors(PWR) fuel is extremely important for the fuel assembly performance in the nuclear renter. The spacer grid welds are currently evaluated mainly by the metallographic examination although it reveals only cross-points which are welded by the laser beam. This experiment is also to compare the weldability of Zircaloy-4 spacer grids using by the GTA and laser beam. The effect of node geometries of spacer grids for GTAW and LBW has been studied and optimum conditions of spacer grid welding have been found. Microstructures and micro-hardness of GTA and laser beam welded zones have been also compared.

  • PDF

장대 레일의 축력을 추정하기 위한 보-기둥 이론 적용에 관한 연구 (A Study on the Application of the Beam-Column Theory to Presume the Axial Force of the Continuous Welded Rail)

  • 이우철;류효진;임남형;이진옥
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.159-168
    • /
    • 2007
  • 장대레일에 발생되는 축력은 좌굴 혹은 파단 등과 같은 사고의 예방에 있어서 매우 중요한 요소이므로 많은 철도 기술자들은 장대레일에 발생되는 축력 산정에 많은 관심을 나타내고 있다. 본 논문에서는 장대레일에 발생되는 축력을 추정하기 위한 보-기둥 이론의 적용성을 고찰하였으며 축력을 추정하는 방정식과 모델의 개발 과정을 제안하였다.

매쉬심 합체박판을 이용한 자동차 Bumper beam의 성형기술에 관한 연구 (The study for the forming technology of Automobile Bumper beam using the Tailored Blank of Mash Seam Welding)

  • 신외경;이수홍;김은석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1376-1380
    • /
    • 2005
  • In recent automotive industry, vehicle weight can be reduced by one-step forming of tailored blanks welded with two or more sheets of metal blanks. Tailored blank(TB) welding is a production method for blanks involving welding together materials of different quality, thickness, and coating, and has proved popular in fabrication automotive parts. This paper deals with the forming characteristics of mash seam welded tailored blanks. Using these forming characteristics, the bumper beam was developed using the mash seam welded tailored blank with the different thickness. We performed the forming simulation with respect to strain distribution on blank during the stamping of the bumper rail part. Based on these results, we made some stamping tryouts with selected types of blank designs to investigate the formability of tailored blank with different thickness. During the tryouts, we knew that it was important the BHF(Blank Holding Force). We obtained to reducing 10.5% weight and cost with adapting the bumper beam of automotive component using the tailored blank of mash seam welding.

  • PDF

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

용접 철골 모멘트접합부의 응력전달 메커니즘 재평가 (Re-evaluation of Force Transfer Mechanism of Welded Steel Moment Connections)

  • 이철호
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.59-69
    • /
    • 2005
  • 용접 철골 모멘트접합부는 일반적으로 평면유지의 가정을 전제한 초등휨이론에 의해 설계되어 왔다. 그러나 1994년 노스리지 지진 이후 보-기둥 접합부의 설계에 초등휨이론을 적용하는 것은 타당치 않음이 몇몇 연구자에 의해 제기된 바가 있다. 본 연구에서는 필자의 최근 해석 및 실험연구를 주 근거로 하여 다양한 형식의 접합부의 응력전달 메커니즘을 재평가하고, 거의 모든 용접 모멘트접합부의 설계에 초등휨이론을 적용하는 것이 부적절함을 보이고자 하였다. 보의 웨브, 수평헌치의 웨브, 리브 등과 같은 수직 플레이트 접합요소는 모두 스트럿 작용에 의해 응력을 전달하는 유사성이 있음을 해석적, 실험적으로 확인하였다. 또한 최근 가장 큰 주목을 받고 있는 고연성 RBS 접합부의 전단력 응력전달 메커니즘은 PN형식 접합부의 그것과 크게 다르지 않음을 확인하였다. 아울러 접합부 설계에 유용하게 활용될 수 있는 단순화된 해석적 응력전달 모형을 소개하였다.

고강도강 기둥(SM570) 보 용접접합부의 탄소성거동에 관한 실험적 연구 -스캘럽상세와 패널강성을 중심으로- (An Experimental Study on the Elasto-Plastic Behavior of High Strength Column to Beam Welded Connection)

  • 김종락;김성배
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.487-494
    • /
    • 2000
  • 고강도강 기둥-보 접합부는 용접방법에 따라 응력집중 및 균열의 발생진전에 큰 차이가 있다. 그러므로 공장제작형 디테일에 대한 내력과 인성, 용접접합부의 소성변형 능력과 패널의 강성에 의한 변형능력의 차이 등을 비교 검토하여 설계자료로 제시하고자 한다. 실험결과는 다음과 같다. 첫째, 누적소성율과 소성변형배율, 내력상승을 모두 논스캘럽이 스캘럽 시험체 보다, 약패널이 강패널 보다 우수한 것으로 나타났다. 둘째, 시험체의 2차균열 발생은 스캘럽 단부에서 발생하였으나, 논스캘럽 시험체는 보플렌지 용접 본드부에서 발생하여 집합부 상세에 따라 상이한 경향을 나타내었다.

  • PDF

I형강으로 보강된 강합성 절곡 바닥판의 유효 휨강성 분석 (Analysis of Effective Flexural Rigidity of Corrugated Steel-Concrete Composite Deck with I-beam Welded)

  • 손창두;홍성남;박준명;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.145-154
    • /
    • 2009
  • 강합성 절곡 바닥판 중에서 I형강으로 보강된 강합성 절곡 바닥판은 절곡바닥판내에 I형강을 매입시켜 기존의 현장타설 RC바닥판보다 경량화되고 시공성을 향상시킨 바닥판이다. 현재 일반적인 철근콘크리트 구조물의 유효휨강성에 대한 계산은 도로교설계기준 및 ACI에서 제안하고 있는 방법을 사용하고 있다. 본 연구에서는 도로교설계기준 및 ACI에서 제안된 유효휨강성에 대한 산정 방법을 Ι형강으로 보강된 강합성 절곡 바닥판에 적용하여 그에 대한 적용성을 평가하고 철근콘크리트 바닥판과 비교를 하였다. 또한 실험변수로써 스터드의 유무, 지간의 변화, 단면의 형태, 부재연결방법에 걸쳐 4가지 변수를 두고 총 15개의 실험체를 제작하여 실제의 휨강성과 ACI에서 제안된 식에 의해 계산된 유효휨강성을 비교, 분석하였다.