• Title/Summary/Keyword: Welded Beam

Search Result 312, Processing Time 0.022 seconds

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Laser Strengthening of $35kgf/\textrm{mm}^2$ Grade Steel Sheet far Automobile (자동차용 $35kgf/\textrm{mm}^2$급 강판의 레이저 강화)

  • Suh, Jeong;Lee, Jae-Hoon;Kim, Jeong-O;Oh, Sang-Jin;Cho, Won-Suk;Lee, Doo-Hwan;Shin, Chirl-Soo;Lee, Moon-Yong;Lee, Gyu-Hyun
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2002
  • The laser strengthening of $35kgf/\textrm{mm}^2$ grade steel sheet is investigated by using $CO_2$ laser beam irradiation. The increase of tensile strength is dominated by the number of fully penetrated melting lines. Also, the optimal laser irradiation pattern is obtained by 3-point bending test. Local laser strengthening clay be effective for the weight reduction of automobile components where the tailored welded blank can not be applied.

Hybrid (CNC+Laser) Process for Polymer Welding (하이브리드 방식 (CNC+Laser)을 이용한 폴리머용접공정)

  • Yoo, Jong-Gi;Lee, Choon-Woo;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.42-48
    • /
    • 2010
  • Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) were welded by a combination of a diode laser and a CNC machining center. Laser beam delivered through the transparent PC and was absorbed in an opaque ABS. Polymers were melted and joined by absorbed and conducted heat. Experiments were carried out by varying working distance from 44mm to 50mm for the focus spot diameter control, laser input power from 10W to 25W, and scanning speed from 100 to 400mm/min. The weld bead and cross-section were analyzed for weld quality, and tensile results were presented through the joint force measurement. With focus distance at 48mm, laser power with 20W, and welding speed at 300mm/min, experimental results showed the best welding quality which bead size was measured to be 3.75mm. The shear strength at the given condition was $22.8N/mm^2$. Considering tensile strength of ABS is $43N/mm^2$, shear strength was sufficient to hold two materials. A single process was possible in a CNC machining system, surface processing, hole machining and welding. As a result, the process cycle time was reduced to 25%. Compared to a typical process, specimens were fabricated in a single process, with high precision.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.

Experimental Study on Two-Seam Cold Formed Square CFT Column to Beam Connections with Asymmetric Diaphragms (상하 이형 다이아프램으로 보강된 2심 냉간성형 각형 CFT 기둥-보 접합부의 실험적 연구)

  • Oh, Heon Keun;Kim, Sun Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • The concrete-filled tube column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. It suggests that pipe should be produced by welding two sides together where two shapes are joined after a channel is pre-welded onto the three sides in order to form an internal diaphragm. The upper diaphragm of the connection used the horizontal plate and the lower diaphragm used the Vertical plate. This research performed 6 monotonic tension experiments describing the connection upside and downside in order to evaluate the structural capability of the offered connection. And the cyclic loading experiment was performed about 2 T-Type column to beam connections. As to the experimental result edge cutting geometry, there was no big effect. An increase in the number of holes of the plate ultimate strength was increased by 5% and The thickness of the plate increases, the maximum strength was increased by 4%. T-Type connections until it reaches the plastic moment showed a stable behavior.

Experimental Study on Steel Beam with Embossment Web (엠보싱 웨브를 가지는 보 부재의 실험적 연구)

  • Park, Han-Min;Lee, Hee-Du;Shin, Kyung-Jae;Lee, Swoo-Heon;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.479-486
    • /
    • 2017
  • Steel beams with corrugated web have been widely used in the steel structures. However, it is challenging to weld the section between the corrugated web and the flange straight, which increases the cost of production. In order to solve this issue, steel beam with intaglio and embossed web (It is called an IEB) was invented. A web with embossment is produced by cold pressing and welded to flange by automatic welding machine. The loading tests were conducted to investigate the load-carrying capacity of IEB, and its test result was compared with that of H-shaped beam having a same size of flange and web. The test results of IEB series showed about 40% higher load capacities than H-shaped series. As a result of comparing the IEB specimen with Eurocodes for steel beams with corrugated web, all of specimens tested in this study did not meet the design value. Therefore, it is difficult to apply existing formula to IEB and new design formula should be presented for field application.

Automatic Inspection Technology for Small Bore Penetration Nozzle in High Radiation Area of Nuclear Power Plant (원자력발전 고방사선구역 소구경 노즐에 대한 자동화검사 기술)

  • Ryu, Sung Woo;Yoon, Kee Bong;Jeon, Gyu Min;Seong, Un Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.504-509
    • /
    • 2016
  • Defects in dissimilar metal welds are reported to be on the increase during the operating lifespan and aging of nuclear power plants. In Korea, reported cases of defects due to dissimilar metal welds include the drain nozzle of a steam generator and RCS hot tube sampling nozzles. Therefore, there is an urgent need to develop a reliable automated nondestructive inspection technique and a system for the inspection of dissimilar metal welds of small diameter nozzles in a high radiation area of a nuclear power plant. In this study, to ensure effective defect inspection of small diameter nozzles (RCS high-temperature tube sampling nozzle) of a nuclear power plant, three different methods were developed. These include: (1) optimum inspection probe design by beam simulation, (2) multi-directions UT optimum inspection technique for the inspection of small diameters of different welded parts, and (3) remote control automatic inspection system. The developed technique and systems have been verified to be suitable for use in the inspection of defects in smaller diameter nozzles in nuclear power plants.

Development of a Prestressed Plate Girder Forming Hybrid Sections of Hot-rolled H Beam and High-Strength Steel Plates (H형강과 고강도 강판으로 복합단면을 구성하는 프리스트레스트 플레이트거더의 개발)

  • Kyung, Yong Soo;Ahn, Byung Kuk;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.637-648
    • /
    • 2005
  • Innovative prestressed steel plate girders were presented in this study. Hot-rolled H beams were loaded first, then relatively high-strengthsteel plates were welded on the top and bottom flanges of preloaded H beams. Finally, high prestressed plate (HiPP) girder was manufactured by simply releasing prestresses of rolled beams. To verify prestress distributions induced in this girder, the experimental study was conducted and some guidelines to manufacture these girders effectively were addressed. In addition, methods to determine the allowable bending stress of HiPP girders and to check welding stresses were addressed for design of temporary bridges. The efficiency and effectiveness of the present girder were demonstrated through design examples of temporary bridges adapting the prestress-induced girder or the plate girder of the same section without prestresses. As a result, it has been found to be possible that the span length of HiPP girders for temporary bridges is longer than that of girders without prestresses.

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.