• Title/Summary/Keyword: Weld growth

Search Result 193, Processing Time 0.03 seconds

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

A Study on Weld Pattern Analysis and Weld Quality Recognition using Neural Network (신경회로망을 이용한 용접현상 해석 및 용접 품질판단에 관한 연구)

  • Lee, Jun-Hee;Kim, Ha-Na;Shin, Dong-Suk;Kang, Sung-In;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.345-348
    • /
    • 2008
  • Recently, in Weld Processing field, unmanned and automatic system construction has experienced the rapid growth, and diverse signal processing has been employed in order to translate the exact weld pattern. It this paper, We will suggest the effective neural network which can deride the weld quality in arc weld and monitoring system in real time. In addition, We will present the pre-processing for selecting the study data, and the method to evaluate the wave of weld more precisely and accurately through known Neural Network.

  • PDF

A Study on Weld Pattern Analysis and Weld Quality Recognition using Neural Network (신경회로망을 이용한 용접현상해석 및 용접 품질판단에 관한 연구)

  • Lee, Jun-Hee;Choi, Sung-Wook;Shin, Dong-Suk;Kang, Sung-In;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.407-412
    • /
    • 2009
  • Recently, in Weld Processing field, unmanned and automatic system construction has experienced the rapid growth, and diverse signal processing has been employed in order to translate the exact weld pattern. In this paper, We will suggest the effective neural network which can decide the weld quality in arc weld and monitoring system in real time. In addition, We will present the pre-processing for selecting the study data, and the method to evaluate the wave of weld more precisely and accurately through known Neural Network.

Heat input effects on microstructure quenched and tempered steel ASTM A517 to stainless steel AISI 316L

  • Pezeshkian, Rouhollah Mohsen;Shafaiepour, Saiedeh
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In this study, the effect of heat input on weld metal microstructure and the effects of dissimilar weld heat affected zone in quenched and tempered ASTM A517 on the stainless steel AISI 316L is investigated through the optimization of welding parameters. For this purpose, two welding techniques are used, tungsten-conventional gas and pulsed gas with weld wire ER 309MoL with Diameter 2.4 mm. Research showed that the grain size of the heat affected zone in pulsed welding is less compared with conventional welding; weld metal structure is fully austenitic, it has a finer structure in the pulsed method. Additionally, the growth of weld metal adjacent steel A517 is different from steel 316L. Further, investigation showed that the rate of dilution is less in the pulsed method and the impact energy is increased in each three regions of the weld metal and heat affected zones in the pulsed method; the fracture in the weld metal and heat affected zone of steel 316L is quite soft and it is semi-crispy in the heat affected zone of steel A517.

A Fracture Mechanics Study on the Fatigue Crack Growth Behaviors in Aluminum Alloy Weldments (알루미늄 합금 용접부의 피로균열성장거동에 관한 파괴력학적 연구)

  • 차용훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 1996
  • The objective of this study is to investigate the influence of welding residual stresses on the fatigue crack growth behavior of cracks located transverse to the weld bead. For this purpose, G. T. A (Gas Tungsten Arc) welding was performed on hte Al alloy 1100-O plate and the same initial crack is made on HAZ(Heat Affected Zone), weld metal and base meta respectively. Specimens were used CT(Compact Tension) specimens. Initial welding residual stresses were measured by using strai gage sectioning method. All specimens were tested under constant amplitude load with stress ratio R=0.1, It is possible to predict fatigue crack growth behaviors and the fatigue life, using numerical analysis together with distribution of initial residual stress and the values of C and m obtained from $da/dN-{\Delta}K$

  • PDF

Butt 용접부에서 잔류응력이 피로균열성장거동에 미치는 영향에 대한 실험적 연구 1

  • 최용식;김영진;우흥식
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 1988
  • The objective of this paper is to investigate the effect of residual stress on fatigue crack growth behavior. For this purpose, submerged arc welding was performed on SM50A steel plate and post weld heta treatment (PWHT) was followed. Residual stress distribution on the weld plate was determined by a hole drilling method and a series of .DELTA.P-const. and .DELTA.K-decreasing fatigue test were performed on the three different regions, i.e. weld metal, HAZ and base metla. Following conclusins were achieved. 1. In "as welded" specimens, tensile residual stresses were produced in the center portion of the specimen while compressive residual stresses were produced near the edges. In PWHT specimens, however, most of the residual stresses were disappeared. 2. The fatigue crack growth behavior in low .DELTA.K region was considerably affected by the presence of residual stress in both "as welded" and PWHT specimens. 3. Because of the relaxation of residual stresses in PWHT condition, the values of m increased from 2.62-2.78 (in the "as welded" condition) to 3.57-3.91 (in the "PWHT" condition)3.91 (in the "PWHT" condition)condition)

  • PDF

Evaluation of Influence on the Fatigue Strength of Residual Stresses at the Welded Toe of Welded Structure. (용접구조물 요접토우부의 잔류응력이 피로강도에 미치는 영향 평가)

  • 차용훈;김하식;김일수;성백섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • This Study is to investigate the influence of weld residual stresses on the fatigue crack growth behaviors in pressure ves-sel reinforcement. In order to perform this study, the automatically welded specimens are prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. For pad-on-plate of skip welding continuous welding and PWHT specimen, fatigue crack initiation is generally initiat-ed at weld starting and end toe zone, and ruptured at weld starting toe zone, Fatigue life if pad-on-plate continuous speci-men is increased more than that of pad-on-plate skip fillet welding specimene about 85% under low load, about 20% under high load, and decreased than that of two-pad continuous welding specimen about 85%. In da/dN-$\Delta$ Κ curve under low load, pad-on-plate skip fillet welding specimen showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$Κ greater specimene E(3.8{\times}10^{-6}$mm/cycle). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel (HT60급 TMCP강 용접부의 피로 거동)

  • Yong, Hwan Sun;Kim, Seok Tae;Cho, Yong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF