• Title/Summary/Keyword: Weld

Search Result 3,041, Processing Time 0.028 seconds

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections (복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.345-354
    • /
    • 2016
  • In the present study, hybrid moment connections of welding and bar reinforcement for composite beam-column connections were proposed. Concrete-filled octagonal tube and U-section were used for the column and beam, respectively. In the beam-column connection, the top flange and web of the beam U-section were connected to the column plate by welding. However, to reduce stress concentration at the weld joints, the bottom flange of the beam was not welded to the column plate. Instead, to transfer the tension force of the beam flange, reinforcing bars passing through the column plate were used. Four exterior connections with conventional welded and hybrid moment connections were tested under cyclic loading and their cyclic behaviors were investigated. The test results showed that the hybrid moment connections successfully transferred the beam moment to the column. The strength and ductility of the hybrid moment connections were comparable to the conventional welded moment connection with exterior diaphragm; however, the connection performance was significantly affected by the details of the hybrid moment connection.

A Prediction of the Penetration Depth on CO2 Arc Welding of Steel Sheet Lap Joint with Fillet for Car Body using Multiple Regression Analysis Technique (자동차용 박강판 겹치기 이음부의 CO2 아크 용접에서 다중회귀분석기법을 이용한 용입깊이 예측에 대한 연구)

  • Lee, Kyung-Min;Sim, Hyun-Woo;Kwon, Jae-Hyung;Yoon, Buk-Dong;Jeong, Min-Ki;Park, Moon-Soo;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.59-64
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body are spot welding and $CO_2$ welding are used in a small part. In production field, $CO_2$ welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ welding process frequently. But $CO_2$ welding process should be used at robot interference parts and closed parts where spot welding couldn't. Because of the 0.65mm ~ 2.0mm thickness steel sheet were used in the automotive industry, poor quality of welding area such as burn through and under fill were happened frequently in $CO_2$ process. In this paper, we will study about the penetration depth which gives a huge impact on burn through changing a degree of base metal, welding position and torch angle. Voltage, current and welding speed were fixed but degree of base metal, welding position and torch angle were changed. And Cold- Rolled(CR) steel sheet was used. Penetration depth was analysed by multiple regression analysis to derive approximate calculations. And reliability of approximate calculations were confirmed through additional experiments. As the results of this research, we confirmed the effect of torch and plate angle to bead shape. And we present a possibility that can simulate more accurate to weld geometry, as deduced the verification equations that has tolerance of less than 21.69%.

Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant (500 MW 화력발전소 고압 증기 배관 손상 원인 분석)

  • Kim, Jeongmyun;Jeong, Namgeun;Yang, Kyeonghyun;Park, Mingyu;Lee, Jaehong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The 500 MW Korean standard coal-fired power plant is the largest standardized power plant in Korea and has played a pivotal role in domestic power generation for over 20 years. In addition to the aging degradation due to long term operation, the probability of failure of power generation facilities is increasing due to frequent startup and stop caused by the lower utilization rate due to air pollution problem caused by coal-fired power plants. Among them, steam piping plays an important role in transferring high-temperature & pressure steam produced in a boiler to turbine for power generation. In recent years, failure of steam piping of large coal-fired power plant has frequently occurred. Therefore, in this study, failure analysis of high pressure piping weld was conducted. We identify the damage caused by high stress due to abnormal supporting structure of the piping and suggest improved supporting structure to eliminate high stress through microstructure analysis and piping stress analysis to prevent the occurrence of the similar failure of other power plant in the case of repetitive damage to the main steam piping system of the 500 MW Korean standard coal-fired power plant.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

Current Status and Investigation of International Co-operative Research Program-PINC(Program for the Inspection of Nickel Alloy Components) (국제공동연구 PINC(Program for the Inspection of Nickel Alloy Components) 현황 및 고찰)

  • Kim, Kyung-Cho;Kang, Sung-Sik;Song, Kyung-Ho;Chung, Koo-Kap;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, PINC project. The aim of this project is to fabricate and obtain representative NDE mock-ups with flaws to simulate tight PWSCC cracks, to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing tight cracks such as PWSCC, to document the range of locations and crack morphologies associated with PWSCC and observed responses and to incorporate findings from other ongoing PWSCC research programs, as appropriate. By participating in PINC project, Korean morphology technique about PWSCC and NDE technique have improved and become similar lever with other advanced country. Therefore, the evaluation technique of integrity for nickel alloy component has been improved by cooperation with university, research institute and industries.

A Shape Control of Welded Joints to Improve Fatigue Strength (피로강도 향상을 위한 용접이음부의 형상제어에 관한 연구)

  • Kang, Chang Ib;Kook, Seung Kyu;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.479-492
    • /
    • 2004
  • When U-ribs of steel deck plates are connected at the field, overhead welding should be done with backing strips. Misalignments may occur and lead to eccentric moments as well as high stress concentrations at welded joints. In this study, stress analyses and fatigue tests were carried out. Stress analyses for U-ribs' welded joints with backing strips were performed with different misalignments, root shapes, root gaps, and backing strip sizes. From the stress analyses, the stress concentration factors increased with increasing misalignments and root gaps. With the fixed misalignments and root gaps, the stress concentration factors obtained in the case of the semi-circle root shape were lower than those in the case of the right-angle root shape. It was verified that backing strip sizes have little influence on stress concentration factors. The fatigue tests for U-ribs' welded joints with backing strips indicated that increased misalignments shorten fatigue life drastically and cracks usually initiate at the root of the base metal and are propagated to the weld bead surface. Based on the results of the stress analyses, root-shape control methods were developed to mitigate stress concentration by changing welding condition control, radius curvature, and flank angle.