• Title/Summary/Keyword: Weighted model

Search Result 1,312, Processing Time 0.029 seconds

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number (분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발)

  • Song, Chul Min;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.

The Subjectively Weighted Linear Utility Model using Bayesian Approach (베이지안 기법을 이용한 주관적 가중선형효용모형)

  • 김기윤;나관식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.111-129
    • /
    • 1994
  • In this study, we develope a revised model as well as application of decision problem under ambiguity based on the subjectively weighted linear utility medel. Bayes'rule is used when there are ambiguous probabilities on a decision problem and test information is available. A procedure for assessing the ambiguity aversion function is also presented. Decision problem of chemical corporation is used for an illustration of the application of the subjectively weighted linear utility model using Bayesian approach. We present the optimal decisiond using newly developed model. We also perform the sensitivity analysis to assure ourselves about the conclusion we obtianed on degree of ambiguity aversion due to characterize parameter of subjectively weighted linear utility model.

  • PDF

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

Robust inference for linear regression model based on weighted least squares

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF

Simulation of Whole Body Posture during Asymmetric Lifting (비대칭 들기 작업의 3차원 시뮬레이션)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

Automatic Detection of Left Ventricular Endocardial Boundary on B-mode Short Axis Echocardiography (B 모드 단축 심초음파 영상의 좌심실 내벽 윤곽선 자동 검출)

  • 김명남;원철호;조진호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1294-1304
    • /
    • 1995
  • In this paper, a method has been proposed for the fully automatic detection of left ventricular endocardial boundary in B-mode short axis echocardiography without manual intervention by human operator. The proposed method makes use of the weighted model that approximates to endocardium and incomplete edge information for echocardiography. Therefore, this method is more effective than boundary detection by only edge information. The implementation of this method is as follows. First, the proposed algorithms are used in order to detect the approximate boundary, then a weighted model with the approximate boundary is constructed. Finally, the cavity center of the left ventricle performing the Hough transform with the weighted model and edge image can be found automatically, and then the endocardial boundary using detected center, original image, weighted model, and edge image can be detected. validations of this method with experimental results on echo image of dog's heart and clinical echocardiography is verified.

  • PDF

The Establishment of Walking Energy-Weighted Visibility ERAM Model to Analyze the 3D Vertical and Horizontal Network Spaces in a Building (3차원 수직·수평 연결 네트워크 건축 공간분석을 위한 보행에너지 가중 Visibility ERAM 모델 구축)

  • Choi, Sung-Pil;Piao, Gen-Song;Choi, Jae-Pil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.23-32
    • /
    • 2018
  • The purpose of this study is to establish a walking energy weighted ERAM model that can predict the pedestrian volume by the connection structure of the vertical and horizontal spaces within a three-dimensional building. The process of building a walking-energy weighted ERAM model is as follows. First, the spatial graph was used to reproduce three-dimensional buildings with vertical and horizontal spatial connection structures. Second, the walking energy was measured on the spatial graph. Third, ERAM model was used to apply weights with spatial connection properties in random walking environment, and the walking energy weights were applied to the ERAM model to calculate the walk energy weighted ERAM values and visualize the distribution of pedestrian flow. To verify the validation of the established model, existing and proposed spatial analysis models were compared to real space. The results of this study are as follows : The model proposed in this study showed as much elaborated estimation of pedestrian traffic flow in real space as in traditional spatial analysis models, and also it showed much higher level of forecasting pedestrian traffic flow in real space than existing models.

Design Optimization of a Channel Roughened by Dimples Using Weighted Average Surrogate Model (가중평균 대리모델을 사용한 딤플 유로의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Staggered dimples printed on opposite walls of an internal cooling channel are formulated numerically and optimized to enhance heat transfer performance. Nusselt number and friction factor based objectives are considered and a weighted average surrogate model is used to approximate the data generated by numerical simulation. The dimpled channel shape is defined by three geometric design variables, and the design point within design space are selected using Latin hypercube sampling. A weighted-sum method for multi-objective optimization is applied to integrate multiple objectives into a single objective. By the optimization, the objective function value is improved largely and heat transfer rate is increase much higher than pressure loss increase due to shape deformation. Channel with vertically non-symmetric optimum dimples is tested and found that the best appears if dimples on opposite wall are displaced by one quarter of dimple spacing.

Weighted Least Absolute Error Estimation of Regression Parameters

  • Song, Moon-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.8 no.1
    • /
    • pp.23-36
    • /
    • 1979
  • In the multiple linear regression model a class of weighted least absolute error estimaters, which minimize the sum of weighted absolute residuals, is proposed. It is shown that the weighted least absolute error estimators with Wilcoxon scores are equivalent to the Koul's Wilcoxon type estimator. Therefore, the asymptotic efficiency of the proposed estimator with Wilcoxon scores relative to the least squares estimator is the same as the Pitman efficiency of the Wilcoxon test relative to the Student's t-test. To find the estimates the iterative weighted least squares method suggested by Schlossmacher is applicable.

  • PDF

CONVERGENCE OF WEIGHTED U-EMPIRICAL PROCESSES

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.353-365
    • /
    • 2004
  • In this paper, we define the weighted U-empirical process for simple linear model and show the weak convergence to a Gaussian process under some conditions. Then we illustrate the usage of our result with examples. In the appendix, we derive the variance of the weighted U-empirical distribution function.