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CONVERGENCE OF WEIGHTED U-EMPIRICAL
PROCESSES'

Hyo-IL PARk! AND JONG-HwA NAZ?

ABSTRACT

In this paper, we define the weighted U-empirical process for simple linear
model and show the weak convergence to a Gaussian process under some
conditions. Then we illustrate the usage of our result with examples. In the
appendix, we derive the variance of the weighted U-empirical distribution
function.
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1. INTRODUCTION

Consider the simple linear model
Yi=Bo+Bizite, 1<i<n,

where ¢;'s are independent and identically distributed random variables with a
common unknown distribution function F, z;'s are known covariates, (3; is the
parameter of our interest and (g, the nuisance parameter. Without loss of gener-
ality, we may assume that z; < zp < --- < 2, with at least one strict inequality.
Also we assume that the distribution function F' is uniformly continuous. Sev-
eral nonparametric procedures for the inferences about 3; have been carried out
based on the following differences

ej — & = Y; = Yi = Bi(z; — i) (1.1)
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such as Wilcoxon rank sum procedure for the two sample problem and Sen
(1968)’s procedure for the regression setting. From now on, we assume that
Bo = 0 since fy disappears in the expression (1.1). Sievers (1978) also consid-
ered the inferences about ; based on (1.1) but used the following weighted rank
statistics defined by

n—-1 n
Sn(B1) = Z Z wiI[Y; = Y; < Bi(zj — 4)],

i=1 j=i+1
where the weights w;; > 0 with w;; = 0 whenever z; = z;. We note that S,(0)
is the Wilcoxon rank sum statistic or Sen’s statistic for testing Hy : 81 = 0 if
w;; = 1 for z; < z;. Sievers considered obtaining the point and interval estimates
and proposed test procedures for 8; based on S,(f1) by varying the weights.
Now we note that (Y; —Y;)/(z; — ;) can be considered as a kernel for ; since
(Y; = Y;)/(z; — ;) is an unbiased estimate of 8, for z; # z;. For this reason,
Serfling (1980) named S,(51) the weighted U-statistics. Silverman (1983) con-
sidered a class of empirical processes having the structure of U-statistics for one
sample setting and showed the weak convergence of the processes to a continuous
Gaussian process. Also O’Neil and Redner (1993) and Major (1994) considered
obtaining limiting distributions for the weighted U-statistics based on the 7id set-
ting. In this paper, we consider the weak convergence of the processes having the
weighted U-statistics structure under the linear model. In the following, we will

assume that 335" >°7_; wy; = 1. Then we may define

n-1 n
Guly) = Z Z wi;IY; =Y <y + Bz — )

i=1 j=i+1
as the weighted U-empirical distribution function. Before we proceed further,
we introduce several notation for the later use. For each k, 1 < k < n, let
Wk = Y gy Wi and wy = Zf;ll w;, with the notations that w; = 0 and
wp. = 0. Also let w?, = pya w,zc,, wi, = > k=1 w,zlc and wign = Y p_q WkWk-
Finally, let w2 = 3°}_,(wk. — wx)?. Then we define the weighted U-empirical

process as follows: For each y € (—o0, ),

Waly) = E%{Gn(y) ~ G},

where w, = (w2)Y/? and G(y) = E{I[Y;-Y; < y+pP1(z; —z:)]} is the distribution
function of €; —&; = Y; = Y; — fi(z; — z;).

In the next section, we show the weak convergence of W, to W, which is a
Gaussian process on D(—o0, 00).
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2. WEAK CONVERGENCE

Before we prove the weak convergence of W), to a Gaussian process W, first of
all, we show the convergence of finite dimensional distribution of W,, and obtain
the covariance function. For this purpose, we employ the method of projection
(cf. Hajek, 1968). For eack k, let

h(y;u) = E{Gn(y) — G(y)|Yk = u}

n—-1 n
=3 wyB{I[Y; - Y; <y +Bi(z; — z:)] - G)|Vk = u}
i=1 j=i+l1
= Y wu{F(y+u—Bizi) — Gy)}
i=k+1
k-1

- Zwik{F(——y +u—pFizg)” — (1-G(y))}

=1
= wp{F(y +u— Bi12x) —Gy)} —wi{F(—y +u— fizr)”—(1 - G(y))},

where F'(—y +u — Bizg)” = P{Y; — f1z; < —y +u — fizx}. Then we note that
by the change-of-variable technique,

E{F(y+ Y — Bizi)} = G(y),
Var{F(y + Y, — Brax)} = / Py +u) - GE)2dF),  (21)

E{F(—y+Yx —frze)"} =1-G(y)

and
Var(F(-y+Yi - iz} = [ (Fly+)” = (1= G@PAFe).  (22)
Thus we have that for each k,
E{h(y;Yr)} =0
and

Var{h(y; Yx)}
-t [ {Ply+u) - G () (2.3)

2w [ TPy +w) - G)HF(-y +u)” — (1 - G(y))}dF(u)

+ut [ T (F(ey ) - (1 - W)} 2dF ().
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Now let for each y € (—o0, ),
1 n
Win(y) = o > wp{F(y + Yi — fizx) — G(y)}
™ k=1

and n
Lz Z w_k{F(-—y + Yk — ﬁlxk)— - (1 - G(y))}7

" k=1

Won (y) = w

where wi, = (w?,)Y/? for each i = 1,2. Also let W(y) = S_7_, h(y; Yi)/wn.
Then we note that

Wi, 1
Wiy) = —2—>" wp{F(y + Yi — fizx) — G(y)}
Wn Win k1
w 1 < _
— 2 N wp{F(~y + Vi — Bizr)” — (1 - G(y))}
Wy Won E—1
= ElﬂWln - %Wm-
n T

We note that W (y) is the projection of W, (y) onto the space of sum of inde-
pendent random variables. In order to show the weak convergence of W (y) to
W (y), we need the following two assumptions.

AssuMmPTION 1. For all ¢ and j and for all n,
Wi = O(n_Q).

ASSUMPTION 2. As n — o0,
Win

w2
— — A7 and - Ag
Wp, Wn,

for some real numbers A\; > 0 and A; > 0.

From Assumption 1, Noether’s condition follows immediately with the as-
sumption that 377 > j=iy1 wij = 1. Therefore we have that as n — oo,

2 w2

w? y
max —=~ — 0 and max —L — 0. (2.4)
1<i<n w3, 1<j<n w,

Also Assumption 2 with the definitions for wi,, won, wign and w, implies that

W12n
oz A
n

for some real number Aj2 > 0. Then we have the following result.
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LEMMA 2.1. With Assumptions 1 and 2, W} (y) converges weakly to a Gaus-
sian process W(y) on D(—o0,00) with covariance function C(y1,y2), where

Cy1,y2)
=3 [ (Pl + 0) = G)HF e + ) - Glun)}dF(w)

xiz [ [P+ 0) - GHF w0 - (1= Gw)

—00

+HF(—y1+u)” — (1 =Gy))H{F(y2 +u) — G(yz)}] dF (u)
+23 /_°° {F(-y1 +u)” = (1 - Gy))H{F(-y2 +uv)~ — (1 — G(y2))}dF (u).

PROOF. The covariance structure follows immediately from (2.1) and (2.2).
Also the finite dimensional convergence of (W (y1),..., Wi (yp)) to (W (y1),...,
W(yp)) is obvious since Wy (y) consists of independent and bounded random
variables. Therefore it is enough to show the tightness. For this, we note that
for any given € > 0 and § > 0,

P{ sup |Wy(t) — Wy (s)| >6} SP{ SUD Wiy () — Win(s)| > E}

[t—s|<d |t—s|<é Wn 2

+P{ sup ?—2—731W2n(t) — Wan(s)| > E}
[t—s|<é Wn 2

£
< P s ) - Winl9> 5}

€

+P{[tilsllp<5|W2n(t) Wan(s)| > 2(,\+1)}
for all sufficiently large n from the definitions for wy,, we, and wy, where A =
max{A1, A2}. Also we note that Y p_;(wk./win)? =1 and 35 (wi/w)? =1
for all n. Therefore the conditions (N1) and (N2) in Theorem 2.2a.1 of Koul
(1992, p.11) are satisfied with (2.4). Thus the tightness follows from Theorem
2.2a.1 of Koul by noting that Wj,(y) consists of independent and bounded random
variables for each i = 1, 2. O

We note that in Lemma 2.1, the two empirical processes Wi, (y) and Way,(y)
are orthogonal if wig, = 0. Now we show the asymptotic equivalence between
Wa(y) and W} (y) in the following sense.
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LEMMA 2.2. With Assumption 1,

lim sup E[{Wa(y) — Wi(y)}’]=0.

N—=00 —co<y<oo

Proor. First of all, we note that with the double expectation theorem (cf.
Bickel and Doksum, 1977), for each y € (—00, 00),

E[{Wa(y) - Wi()}?] = E{Wa()}*] + E{W; (y)}*] = 2EWa(y)W,; (v)]
= B{{Wa(»)}’] - E{W. (»)}’]

BWa W)} = - B{ W) S i i)}
" k=1

= = 3 B{Waly)h(y )}

- wi 2 Elh(y; Ye) E{Wa(y)|¥3}]

Z E{h’2 ya Yk)}

wp, k=1
E[{W, ()]
with the fact that E{> 7_, h(y; Yi)}? = 51 E{h*(y; Vi) }-
Since
B{Wa@)F) = Var(Wa(w)} = Var{=-Ga(0)}
and

E({W; ()] = Var(W; (1)} = Var{ zhy,n}
we have from Appendix,
ELWa)}’] = B ()]
szZ slowa e - [~ P+ - cwparw

i=1 j=i+1

- / (P(—y+u)™ — (1 - G))?dF(u)|.
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Therefore we may conclude with Assumption 1 that

lim  sup E[{Wn(y)—Wr’f(y)}Z]

N—=00 _ooy<oo

= im  swp  {B{{W.0))) - B{W; )11}

N=0 —ooLy<oo

n-1 n
1 2
< lim — E g wij
n—oo W2 L L
=1 j=i+1
=0

from the definition of w, and Assumption 1. O

Therefore we now arrive at the following conclusion.

THEOREM 2.1. Under Assumptions 1 and 2, W,(y) converges weakly to a
Gaussian process W (y) on D(—o0,00).

ProoF. The finite dimensional convergence from Slutsky’s Theorem is ob-
vious with Lemma 2.2. Therefore it is enough to show the tightness. For this
matter, first of all, for any 6 > 0 and for any two real numbers s and ¢ such that
|t — s| < 4, we define the modulus of continuity of W, as follows:

Qn(‘s) = Ssup |Wn(t) - Wn(s)l

|t—s|<d

Then it is enough to show that for any € > 0,

lgﬁ)lnll{gop{ﬂ"(é) >e}=0.

For this, let @ = (a(1),...,@(n)) be an arbitrary permutation of (1,...,n). Then
we make pairs such as (a(25 — 1),a(2j)) with consecutive two permutational
numbers, where 7 = 1,...,[n/2], where [a] is the largest integer part of a which
does not exceed the real number a. If n is even, then we can obtain the complete
n/2 number of pairs whereas if n odd, then we discard the last one a(n). Then
we define independent random variables as follows: For each j, 7 =1,...,[n/2]
if Za(25) > Ta(25-1)s then

Vja(y) = I[Ya(2j) - Ya(2j—1) <y+p (%(2;’) - wa(2j—1))]-
If .’L'a(gj) < -'Ea(2j—1)a then

Vi) = I[Ya(2i-1) — Ya(ej) ¥+ Bi1(Zagj—1) — Ta(es))]-
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Finally, if xa(?j) = ma(gj_l), then V}a(y) =0.

Also let
[n/2]

Ug(y) = > wVe(y) - Gy)),
j=1

where wj; is the corresponding weight such as w§ = w;; if V¥ (y) = I[Y; - Y; <
y + Bi(z; — z;)]. Then we note that

" UR(y) = 2n - 2! S ]{Gnly) - Gy)}

all o
or
1 (8
Gn(y) _G(y) 2'(n—2)'[n/2] ; n(y)
Therefore
1 1 o
Waly) = 2l(n — 2)![n/2) wy a%;l U ()
161y
n! [TL/2] Wn, aﬁ:lUn( )
= 2 W)
wher
- oy ) 1o,
) = g UEw)
Also let

03(6) = sup WE() — WE(s)
|t—s|<é
for the modulus of continuity of W2 for each permutation . We note that W2
consists of independent random variables for any particular permutation o, whose
number of elements is at most [n/2]. Also we note that

s, = 06"

Then we have that with triangle inequality,

B{0.0)) < — 3 B{93(6))

“all a

< max E{93(5)}.
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Therefore by Chebyshev’s inequality, we have for any € > 0

. I . I 1
lim Lim P{Qn(9) 2 e} < lim lim ~E{Q(3)}

< lim Tim ~ max E{Q2(5)}

§l n—soo g

=0,

since for any permutation a, W2 is a weighted empirical process, which weakly
converges to a normal process. a

In order to illustrate the usage of our result, we consider the following ex-
amples. First of all, suppose that the first n; number of observations has been
taken from control group and the last ng = n — n; number of observations taken
from the treatment group. Then this is just the two-sample location translation
problem. Since the sum of weights should be one, w;; = 1/(niny) if we use the
uniform weights for all ¢ and j. We note that w;; = O(n™2), which satisfies
Assumption 1. Then we easily obtain that ’

w nl’l, for 1 <k <nyq,
ke =
0, for ni+1<k<n

and
{o, for 1<k <ny,
W =

ngl, for ny +1<k<n.

Thus w?, = 1/n1, w3, = 1/ny and wyg, = 0. Sincew? = 1/n1+1/ny = n/(niny),
we have that

—Var h(y; Yy) p = — {Fly+u) — G(y)}*dF(u)
- {z v} =2 [ e y

S / TPy 4w~ (1 - G()YdF (w),

which will converge to Var(W (y)) for all y with Assumption 2 that (n; /n)/? — A,
and (ng/n)'/2 - Ay as n — co. Especially when y = 0, we obtain that

1 n
’L—lﬁVar{Z h(0; Yk)}
n k=1

= %2- /_oo {F(u) — G(0)}2dF (u) + % /—00 {Fu)" - (1 - G(O))}2dF(u)
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_1 n N9
—12(n + n)’

which is the variance of Wilcoxon rank sum statistic W;,(0) under Hy : 8; = 0
and converges to (A% + A2)/12 of Var(W(0)).

As another example, we consider the regression setting. For testing Hy : 51 =
0 based on S,(B;), the limiting variance of W, (0) would be again

1
12
from Lemma 2.1 with Assumptions 1 and 2. Therefore the inferences about 5;

can be performed with the fact that W(0) is normally distributed with mean 0
and variance (A2 — 2\;5 + A3)/12.

(A2 — 212 + A2)
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APPENDIX

In this appendix, first of all, we derive the variance of G,,(y) in the following
manner. First of all, we note that

Var{wiI[Y; - Y; <y + Bi(zj — 23)]} = wi;Var{I[Y; = Y; <y + Bi(z; — 2,)]}
= w5G(y)(1 - G(y)).

For the covariance, we will consider the following four cases separately for the
pairs (¢,7) and (k,1):

(1) For i =k,
Cov{w;;I[Y; = Y; <y + Bilzj — )], wallY; =Y <y + Bi(z — 2:)]}
= wyw [ {(F(y+u) - G(y) PP (a).

(2) For j =k,

Cov{w;I[Y; = Y; <y + fi(z; — z)), wul[Yi —Y; <y+ Bz — )]}
= —uiguy [{[P(=y +4) — (1 - GWIHF( + ) - Glu)}dF(a).
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(3) Fori =1,
Cov{wigI[Y; ~ Yi <y + Bu(z; — w1)), wellYs - Ye <y + Bz — =)}
= —wigks [{F(-y+u)" - (L= CuIHF( + ) - Cl)}aF(a).
(4) For j =1,
Cov{wi;I[Y; = Y; <y + fi(z; — zi)], wiiI[Y; — Y <y + Bilz; — zi)]}

= wijony [{F(-y+)" - (1= G dFw)

Then we may obtain Var|[G,(y)] as follows:

Var[G ZZ G(y)) + C1 — Cy — C3 + Cy.
i=1 j=i+41

The C’s are expressed as follows:

G- Y [P+ - 6wYdrw

i=1 i+1<j#I<n

Es Suu-Sy U} [+ - Gy

i=1 j=i+1l=i+1 i=1 j=i+1
n—-1 n
(w3 w-% 3 )} [trwen - cwere)
=1  j=itl i=1 j=it+l
- {E;w - 5:31;“’} [+ 0 - G)par
_ {zw -z i} [0 - G ars
e EE Yoo

i=1 j=i+1l=j5+1

*{F(y +u) — G(y)}dF (u)

—_
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n—2 n-—1

=3 3wy [Py + ) - (1= G+ ) - Gl)ldP(w)

=1 j=141

n—1
= wjwy [{F(-y+u)7 - (L= CWIHF + ) - G)}F (W)
j=2

=S wguy. [{F(-y+u)" = (- GEIHF( + ) - G)dF(w),
7=1

with the facts that w., = 0 and w,. = 0. Also C3 and C4 may be obtained with
similar fashion such as

n—-1 n 1—1
Ci=Y Y Y wuns [ (F(-y+ 0" =1 GEIHEW +u) - GW}F()

i=2 j=i+1k=1

=Y ww; / (F(—y+u)" — (1 - ) HF( +u) — C(y)}dF ()
j=1
and

Ci= S5 wiwy [{P(-y+w)” - (1= GG)FdF (W)

1<i£k<j j=3

n—1 n
. {wsn—z T w;@} [tFy s - (- Gapyarw,

i=1 j=i+1
Then we have the following relation between the variance of Gp(y) and
S n_, h(y; Yx) with (2.3).

Var{Gr(y)} — Va,r{z h(y; Yk)}
k=1

n-1 n n-1 n
=Y Y wAGW0-6w) - Y 3 uh [(Fy+u) - 6w)dFwW)

i=1 j=it+1 i=1 j=it1
n—1 n
- 3wl [Py +u - (- Gw)Par)
i=1 j=i+1
n—1 n
-3 S W [G<y)<1 -6 - [ (Pl -+) - GV P
i=1 j=i+1

- [trey+w -0~ G(y>>}2dF(u>].
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