• Title/Summary/Keyword: Weighted least squares method

Search Result 93, Processing Time 0.027 seconds

Improved Element-Free Galerkin method (IEFG) for solving three-dimensional elasticity problems

  • Zhang, Zan;Liew, K.M.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.123-143
    • /
    • 2010
  • The essential idea of the element-free Galerkin method (EFG) is that moving least-squares (MLS) approximation are used for the trial and test functions with the variational principle (weak form). By using the weighted orthogonal basis function to construct the MLS interpolants, we derive the formulae for an improved element-free Galerkin (IEFG) method for solving three-dimensional problems in linear elasticity. There are fewer coefficients in improved moving least-squares (IMLS) approximation than in MLS approximation. Also fewer nodes are selected in the entire domain with the IEFG method than is the case with the conventional EFG method. In this paper, we selected a few example problems to demonstrate the applicability of the method.

Robust Singular Value Decomposition BaLsed on Weighted Least Absolute Deviation Regression

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.803-810
    • /
    • 2010
  • The singular value decomposition of a rectangular matrix is a basic tool to understand the structure of the data and particularly the relationship between row and column factors. However, conventional singular value decomposition used the least squares method and is not robust to outliers. We propose a simple robust singular value decomposition algorithm based on the weighted least absolute deviation which is not sensitive to leverage points. Its implementation is easy and the computation time is reasonably low. Numerical results give the data structure and the outlying information.

Weighted Least Squares Based on Feature Transformation using Distance Computation for Binary Classification (이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법)

  • Jang, Se-In;Park, Choong-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.219-224
    • /
    • 2020
  • Binary classification has been broadly investigated in machine learning. In addition, binary classification can be easily extended to multi class problems. To successfully utilize machine learning methods for classification tasks, preprocessing and feature extraction steps are essential. These are important steps to improve their classification performances. In this paper, we propose a new learning method based on weighted least squares. In the weighted least squares, designing weights has a significant role. Due to this necessity, we also propose a new technique to obtain weights that can achieve feature transformation. Based on this weighting technique, we also propose a method to combine the learning and feature extraction processes together to perform both processes simultaneously in one step. The proposed method shows the promising performance on five UCI machine learning data sets.

A Generalized Partly-Parametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.401-409
    • /
    • 2006
  • We consider a generalized partly-parametric additive risk model which generalizes the partly parametric additive risk model suggested by McKeague and Sasieni (1994). As an estimation method of this model, we propose to use the weighted least square estimation, suggested by Huffer and McKeague (1991), for Aalen's additive risk model by a piecewise constant risk. We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least squares method.

  • PDF

Parameter Estimation using a Modified least Squares method (수정된 최소자승법을 이용한 파라미터 추정)

  • Han, Young-Seong;Kim, Eung-Seok;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.691-694
    • /
    • 1991
  • In a discrete parameter estimation system, the standard least squares method shows slow convergence. On the other hand, the weighted least squares method has relatively fast convergence. However, if the input is not sufficiently rich, then gain matrix grows unboundedly. In order to solve these problems, this paper proposes a modified least squares algorithm which prevents gain matrix from growing unboundedly and has fast convergence.

  • PDF

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

On Confidence Intervals of Robust Regression Estimators (로버스트 회귀추정에 의한 신뢰구간 구축)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.97-110
    • /
    • 2006
  • Since it is well-established that even high quality data tend to contain outliers, one would expect fat? greater reliance on robust regression techniques than is actually observed. But most of all robust regression estimators suffers from the computational difficulties and the lower efficiency than the least squares under the normal error model. The weighted self-tuning estimator (WSTE) recently suggested by Lee (2004) has no more computational difficulty and it has the asymptotic normality and the high break-down point simultaneously. Although it has better properties than the other robust estimators, WSTE does not have full efficiency under the normal error model through the weighted least squares which is widely used. This paper introduces a new approach as called the reweighted WSTE (RWSTE), whose scale estimator is adaptively estimated by the self-tuning constant. A Monte Carlo study shows that new approach has better behavior than the general weighted least squares method under the normal model and the large data.

Mixed-effects model by projections (사영에 의한 혼합효과모형)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1155-1163
    • /
    • 2016
  • This paper deals with an estimation procedure of variance components in a mixed effects model by projections. Projections are used to obtain sums of squares instead of using reductions in sums of squares due to fitting both the assumed model and sub-models in the fitting constants method. A projection matrix can be obtained for the residual model at each step by a stepwise procedure to test the hypotheses. A weighted least squares method is used for the estimation of fixed effects. Satterthwaite's approximation is done for the confidence intervals for variance components.

Support vector expectile regression using IRWLS procedure

  • Choi, Kook-Lyeol;Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.931-939
    • /
    • 2014
  • In this paper we propose the iteratively reweighted least squares procedure to solve the quadratic programming problem of support vector expectile regression with an asymmetrically weighted squares loss function. The proposed procedure enables us to select the appropriate hyperparameters easily by using the generalized cross validation function. Through numerical studies on the artificial and the real data sets we show the effectiveness of the proposed method on the estimation performances.

Parameter Estimation and Prediction methods for Hyper-Geometric Distribution software Reliability Growth Model (초기하분포 소프트웨어 신뢰성 성장 모델에서의 모수 추정과 예측 방법)

  • Park, Joong-Yang;Yoo, Chang-Yeul;Lee, Bu-Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2345-2352
    • /
    • 1998
  • The hyper-geometric distribution software reliability growth model was recently developed and successfully applied Due to mathematical difficultv of the maximum likclihmd method, the least squares method has hem suggested for parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by the previous studies. It is theo shown that the weighted least squares method is more appropriate hecause of the nonhomogeneous variability of the number of newly detected faults. The adequacy of the weighted least squares method is illustrated by two numerical examples. Finally, we propose a new method fur predicting the number of faults newly discovered by next test instances. The new prediction method can be used for determining the time to stop testing.

  • PDF