pe iy Ceiplra A i o1

z 7| =l B = ¥ E 9] A ol o] e}
27|15 8% £AZE N AR 2o
2= 243 o & vy
E— ] e M [o IRl =
t (=] % tt = Tttt
e X' ./ O ZT-0 s
2
oo ptsle] AaAow HEH T i 2SR hZE] A 4% nde REE Ao E F48
)7 444 gowyl R AAGEHon FEsh ot B =R 9A gl HaxbEHel A Algd Hig v
£ onjmel b s wAE): Hekie gakel e Aty S-S wdd TbeHadsys Aoted nEln 5 dfel i
Y g s HAge g aaso] YFES wlrh ehxwo i deje] vy Al b Aol ofsf A
25 AdsE dal WEe goksih o] o WS HlAES Tyt A4S A g ]88 F UE elrh

Parameter Estimation and Prediction Methods for

ST IR AT

Hyper-Geometric Distribution Software Reliability Growth Model

Joong-Yang Park' - Chang-Yeul Yoo' - Bu-Kwon Lee™

ABSTRACT

The hvper-geometric distribution software reliahility growth model was recently developed and successfully applied.
Due o mathematical difficulty of the maximum likelihood method. the least squares method has been suggested for
parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by
the previous studies. It is then shown that the weighted least squares method s more appropriate because of the
nonhomogencous variability of the number of newly detected faults. The adequacy of the weighted least sguares
methed is Dlustrated by two numerical examples. Finally, we propose a new method for predicting the number of
faults newly discovered by next test instances. The new prediction method can be used for determining the time to

stop testing.

1. Introduction

In recent years software systems have been

widely applied to many complex and critical sys—
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tems. Since the failure of a software system may

nooserious software

be

reliability has become one of major issues in the

result damage, SYStems  are

required Lo very  reliable,  Therefore  software

software system development. In order fo quanti-
tativelv assess the reliability of a software system
during the testing and operational phases, many

software reliability  growth models (SRGMs) have
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beerr proposed 1 the terature. wee. for example,
Goel [1] Ramamoorthy and Bastani [11] and Shan-
thikumar [12] The SRGMs are usually used 1o
estimate the number of remaiming  faults, software
relability  and  other  software  quality  assessment
measures.  Some  of  cwrently  available  SRGMs
enable us to predict probabilistically the time 10 next
occurrence  of faillure in the operational phase
Another class of SRGMs let us estimate the number
of software fauits still residual after the debugging
process. The hyper-geometric distribution  software
reliability  growth model (HGDM) advocated by
Tohma et al. [13] belongs to the latter class of
SRGMs. A series of studies on the HGDM has heen
made tecently by Hou, Kuo and Chang [21 [3]
Jacoby and Tohma [6] Minohara and Tohma [9]
and Tohma et al. [14) Hou, Kuo and Chang [4]
[HHeveloped optimal software release policies bhased
on the HGDM.

This paper first considers the problem of esti-
mating the paramcters of the HGDM. Then the
problem of predicting the number of faults newly
discovercd by additional test operations is inves-
tigated, Section 2 briefly reviews the basic concept
and formulation of the HGDM. The parameter esti-
mation problem is discussed and then the weighted
least sequares method is proposed in Section 3.
Experiments have been performed by using two real
data sets and the results are presented in Section 4.
The results show that the vroposed weighted least

5 suggests 4

squares method  is useful. Section
method for predicting the number of faults newly
discovered by future test operations. The method is
based on the expected value of the number of newly
discovered  faults  obtained on  condition that the

cumulative number of {aults 1s known.

2. Hyper-Geometric Distribution Software Relia-
hility Growth Model

In this section we briefly review the HGDM., At

the begimning  of the test-and debug  process 4
software  svstem is assumed to have m mnitla!
fauits, Test operations performed in a day or 2
week mav be called o test instance, Tesl instances
are denoted by ¢, 7=1,2, i accordance with the
order of applving them. The sensitivity factor, w;.
represents the number of faults discovered by the
application of test instance . Some of the faults
detected by f; may have been detected previously
by the application of test instances ¢, j=1,--,7—1
Hence, the number of faults newly discovered by 2
s nol necessarily equal to  w. That is, each
detected  fault can be classified into the two
categories, newly discovered faults and redis-

covered faults. Let AN, denote the number of

faults newly discovered by ¢ and C;= 21\/} The
J?

following assumptions are made on the HGDM.

(1} No new faults are introduced into the soft
ware system during the debugging process.

{2) Sensitivity factor w; the number of faults
discovered by £, is the faults taken ran-
domly out of m initial faults,

(3) Sensitivity factor w; is represented as a
function of m and p, the progress in test

and-debugging, ie, w;=mp;

The probability that x; faults are newly dis-
covered by ¢ on the condition that C,.-, faults

has been discovered up to #; ;is then formulated

[ e
r_ “ _ X W, — X;
PN, =x,1C, ) = ; &

.

where max (0, w,—C,_ )<x;<min{w;, m—C, )

for 7=1,2,+ Cy=0and x,=0 Thus the con-

as
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ditional cxpected value of N, s
E(N-ICJV ;) = (m- C;»].)I);

The expected values of C; was derived hy Jacohy and

Tohmal7] as

E(C,-):rrz{lﬂfll(l_ﬂ;)] (2)

The sensitivity factor plays an important role in the
HOGDM. Various functions for  w, have been devised
and successfullv applied to real data sets. HEspecially
Houw Kou and Chang {27 introduced two tvpes of
sensitivity factor based on the learming curve. They
are respectivelv  referred to as the exponental
sensitivity  factor and the logistic sensitivity factor.
Functional forms of the sensitivity factor are presented
in Table 1 of Jacobv and Tehma [7] and Minohara
and Tohma [9]

3. Parameter Estimation

Let ¢, and x; be the observed values of €, and
N, Suppose that the software system 1s tested up to
test instance #, The number of testers or compuier
time associated with each test mstance 1s recorded and
denoted by u; Then the available data consists of ¢
(equivalently x,;) and #; (f available}, 7=1,2,- n
In order to estimate the current number of residual
taults and to predict the number of residual faults after
applying £,., for d=1 we first need to estimate the
parameters in the model. Due 1o the mathematical
difficulty of the maximum likelthood method, the least
squares method has been used for the HGDM. Tohma
et al. [13] obtained the least squares estimates by
minimizing

S~ ECOT (3)

This criterion was also emploved in Hou, Kuo and

SR A TS St AT o
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Chang 121 [3] and Jacoby and Yohma [ 7] However,
Tohma ot ol [14] minimized

73

x, EWIC ) (1)

The minimization of expression (4) 18 equiva-lenl o

the munimization of

e BCICoOF

since B(C/C,—\)=C,_+ FE(NIC;,.|) and C;=
C,y+N;. The distribution of N, given by expres
sion (1) is dependent on C,_, C,_ has been already
realized and observed at the time when  rth test
instance is applied. The information contained in ;-
should be utilized for predicting the expected value of
C; or N, Therefore. the minimization of expression
(4) iz more appropriate than the minimization of
expression  (3)

We should now note that the above two criteria
assume that the vanability of N, :=1,2, are
homogenous. But this assumption does not hold for the
HGDM. The variance of N,

i

1s obtained from the

distribution of A, as

(m—C, 3C; 1 p(1—p,)

Var NAC, ) = p—

Clearly Var{N.C;.,) is not constant for all 7. In the
circumstances the weighted least squares method is ge
nerally known tw be adequate. Generally ohservaions s
ubject to large variance are not as informative as obser
vations subject to small varance. Therefore the weight
for an ohservation should then he the reciprocal of its

variance. We may consider the estimates minirnizing

[X,‘— E(N,'I Ci| )}2
= Vw‘(N,IC,»fI)'

4. Application to Real Data Sets

The weighted least sguares method is applied 1o



two real data sets, The first dats set ws presented 1
Tohma ot al. [14] L was collected from o software
system for monttering and real tme control. The test
data  were recorded  dav by dav. Thus the test
operations performed n a day were regarded as @ test
mstance, The number of test workers was  also
recorded for cach test instance. Table 1 shows the
estimation results of the least squares and weighted
least squares methods. We  assumed that  w, =

me;(ai+ 8) as in Tohma ot al. [14] Henceforth

"= ma [ = mfard denotes the estimate.

{Table 1> Estimation results for first data set

least sguares | weighted least squares
m 497.2745 484.9785
2" 0.0554 0.0854
A 1.7487 1.1058

In order to vahdate and check model as  sumptions
and model adequacy, the residual analvsis should be
considered. The studentized residuals obtained by the
least squares method are plotted against 7 in Fig. 1.
The three data points for /=11, 13, 14 appears to be
outhers. (The previous studics on this data set did not
make any comment on this)) Outhers may occur hy
chance. Other causes such as the delaved report of
fault detection may result in outliers. In order to make
our discussion simple, we assume that the three data
points are ohserved by chance. Thus we ignore the
three data points and inspect Fig. 1. The variability of
N; s apparently nonhomogenuous. The variability
increases in the carly phase and then decreases. We
thus employ the weighted least squares method. The
studentized residuals obtained by the weighted least
squarcs method are plotted in Fig. 2 Notice that three
suspicious points are much more clearly revealed. By
ignoring the threc data points, we can sec that the
variability has been stabilized. Using the weighted
least squares estimates, we can compute the following

estimates:

E(N)I C/ !) = ( "\1_— [ )ﬁ\}
and

E(CIC, ) =c¢ | + EWNIC, )

where 9, = 2;(ai+ B). Fig. 3 shows the plots of ¢;
and  E(C,1C,.Vdepicted against & E(C/|C.o)

closely fits to e,
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(Fig. 1) Plot of studentized residuals obtained by the
least squares method. {first data set)
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(Fig. 2) Plot of studentized residuals obtained by the
weighted least squares method. (first data set)
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(Fig. 3} Plots of ¢, and FE(C,|C,. Bgainst ¢ ¢ :

solid line, E(C,IC, ;). dashed line. (first
data set)
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{Fig. 4) Plot of studentized residuals obtained by the
least squares method. (second data set)
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(Fig. 5) Plot of studentized residuals obtained by the
weighted least sguares method {second data
set)
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(Fig. 6) Plots of ¢, and E(C,|C,_ | pgainst 7. ¢; :
solid line, E(C;|C, ) dashed line. (second
data set)



The second data set was gathered from a switching
system and presented in Kanoun ot al. [8] It is the
colicction of the cumulative number of discovered
[aults for 8l test instances. Sincee the number of test
warkers and/or the computer time are not recorded,
this data set 1 analvzed under the assumption that
w; = m{ai+ 8). Table 2 and Fig. 4- 6 show the
results. The two data points for 7= 2, 3seems to be
outliers, By simply gnoring the two data points and
comparmg Fig. 4 and Fig. 5 we find that the
stahilization of variability has heen achieved. Fig. 6

shows that the assumed model works well,

{Tabie 2> Eslimation results for second data set

least squares | weighted least squares
m 478.6827 464.9267
a” 0.1787 0.4555
B 11,3266 6.3174

5. Prediction

Suppose that we want to predict the number of
faults newly detected by next d test instances. That
is, we want the estimate of E{N, .+ + N, C,).
Once the estimate is obtained, we can casily compute
the estimate of E(C,.,C,)= C,+ E(Npsey+ -+
+ N,y 21C,). Such a prediction problem occurs when
we determine the software release time or further test
instances required to meet the given software reli-

ability objective. It can be shown that

E(Nni licn) = (m_ Cn)ﬁn-"l

E(]Vyz FIMNVI'F'Z | C:z)
= E[E<A"Tn‘f 1 +Nn*2 EC;,,N,,JrI )JC”]
:E[{mm Crz“Nnﬂ-l }f)n+2+f\fn+l{cn]

::(m_- C;:)[.ibn‘r“_"i"(l . ,Dre:\_-’)j)iz‘l}«

e Cﬁ)[l_}i(l b))

and in general

E(/ﬁ;N,,,,EC,,) - (mAc,,){l —/Ii(hpm)].

(3

E(C;) derived by Jocoby and Tohma [7]and given
in expression (2), is actually E(C,|C,) This can he
verified by substituting # and 4 in expression (5)
with 0 and i By replaceing the parameters in
expression  (5) with corresponding estimates, we can
predict the number of faults newly discovered by next

d test instances.

Example Consider the second data set. The data is
the collection of C, 7=1,2,+,81Suppose that we
want to predict the number of faults newly discovered
by next two test instances. This can be solved by
estimating E(Ngp + Nyl Cqy). Since ¢g = 461,

E(NSZ-'_NSS f CB])

= (m— 581)[]_;13 (1".58#4”')]
={.7065.

6. Conclusion

This paper first proposed the method for estimating
paramethers of HGDM. The previous studies sug-
gested the least squares method. We argued that the
weighted least squares method is more appropriate
then the least squares method. It was illustrated by
analyzing two real data set. We then proposed a new
method for predicting the number of faults newly
discovered by next test instances. It will be useful for

determining the time to stop testing.
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